期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on extraction and reproduction of deformation camouflage spot based on generative adversarial network model 被引量:5
1
作者 Xin Yang Wei-dong Xu +4 位作者 Qi Jia Ling Li Wan-nian Zhu Ji-yao Tian Hao Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期555-563,共9页
The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative ad... The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative adversarial network model,the distribution of deformation camouflage spot pattern can be directly fitted,thus simplifying the process of spot extraction and reproduction.The requirements of background spot extraction are analyzed theoretically.The calculation formula of limiting the range of image spot pixels is given and two kinds of spot data sets,forestland and snowfield,are established.Spot feature is decomposed into shape,size and color features,and a GAN(Generative Adversarial Network)framework is established.The effects of different loss functions on network training results are analyzed in the experiment.In the meantime,when the input dimension of generator network is 128,the balance between sample diversity and quality can be achieved.The effects of sample generation are investigated in two aspects.Subjectively,the probability of the generated spots being distinguished in the background is counted,and the results are all less than 20% and mostly close to zero.Objectively,the features of the spot shape are calculated and the independent sample T-test is applied to verify that the features are from the same distribution,and all the P-Values are much higher than 0.05.Both subjective and objective methods prove that the spots generated by this method are similar to the background spots.The proposed method can directly generate the desired camouflage pattern spots,which provides a new technical method for the deformation camouflage pattern design and camouflage effect evaluation. 展开更多
关键词 Deformation camouflage Generative adversarial network Spot feature Shape description
在线阅读 下载PDF
Assessing target optical camouflage effects using brain functional networks:A feasibility study
2
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) Brain functional networks Machine learning
在线阅读 下载PDF
MF-CFI:A fused evaluation index for camouflage patterns based on human visual perception 被引量:3
3
作者 Xin Yang Wei-dong Xu +1 位作者 Qi Jia Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1602-1608,共7页
The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the huma... The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the human visual mechanism.In order to make the evaluation method more computationally intelligent,a Multi-Feature Camouflage Fused Index(MF-CFI)is proposed based on the comparison of grayscale,color and texture features between the target and the background.In order to verify the effectiveness of the proposed index,eye movement experiments are conducted to compare the proposed index with existing indexes including Universal Image Quality Index(UIQI),Camouflage Similarity Index(CSI)and Structural Similarity(SSIM).Twenty-four different simulated targets are designed in a grassland background,28 observers participate in the experiment and record the eye movement data during the observation process.The results show that the highest Pearson correlation coefficient is observed between MF-CFI and the eye movement data,both in the designed digital camouflage patterns and largespot camouflage patterns.Since MF-CFI is more in line with the detection law of camouflage targets in human visual perception,the proposed index can be used for the comparison and parameter optimization of camouflage design algorithms. 展开更多
关键词 Camouflage evaluation Visual perception Effect assessment Fused index Eye movement analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部