Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification an...Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed.The method uses multi-layer Bayesian techniques,makes full use of historical statistics and empirical information,and determines the Bayesian estima-tion of the incidence degree of indexes,which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes.Sec-ondly,The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence,and then identifies key system effec-tiveness evaluation indexes.Finally,the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system,and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes,and has good data extraction capability in the case of small samples.展开更多
With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient ...With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient mission consideration and single evaluation dimension in the existing evaluation approaches,this study proposes a mission-oriented capability evaluation method for combat systems based on operation loop.Firstly,a combat network model is given that takes into account the capability properties of combat nodes.Then,based on the transition matrix between combat nodes,an efficient algorithm for operation loop identification is proposed based on the Breadth-First Search.Given the mission-capability satisfaction of nodes,the effectiveness evaluation indexes for operation loops and combat network are proposed,followed by node importance measure.Through a case study of the combat scenario involving space-based support against surface ships under different strategies,the effectiveness of the proposed method is verified.The results indicated that the ROI-priority attack method has a notable impact on reducing the overall efficiency of the network,whereas the O-L betweenness-priority attack is more effective in obstructing the successful execution of enemy attack missions.展开更多
基金supported by the National Natural Science Foundation of China(72271124,72071111).
文摘Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed.The method uses multi-layer Bayesian techniques,makes full use of historical statistics and empirical information,and determines the Bayesian estima-tion of the incidence degree of indexes,which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes.Sec-ondly,The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence,and then identifies key system effec-tiveness evaluation indexes.Finally,the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system,and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes,and has good data extraction capability in the case of small samples.
文摘With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient mission consideration and single evaluation dimension in the existing evaluation approaches,this study proposes a mission-oriented capability evaluation method for combat systems based on operation loop.Firstly,a combat network model is given that takes into account the capability properties of combat nodes.Then,based on the transition matrix between combat nodes,an efficient algorithm for operation loop identification is proposed based on the Breadth-First Search.Given the mission-capability satisfaction of nodes,the effectiveness evaluation indexes for operation loops and combat network are proposed,followed by node importance measure.Through a case study of the combat scenario involving space-based support against surface ships under different strategies,the effectiveness of the proposed method is verified.The results indicated that the ROI-priority attack method has a notable impact on reducing the overall efficiency of the network,whereas the O-L betweenness-priority attack is more effective in obstructing the successful execution of enemy attack missions.