In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation dete...Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.展开更多
Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameter...Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameters of EPDs based on the Si-PIN photodetectors include photon energy response(PER),angular response,inherent error,and dose rate linearity.Among them,PER is a key parameter for evaluation of EPD measurement accuracy.At present,owing to the limitations of volume,power consumption,and EPD cost,the PER is usually corrected by a combination of single-channel counting techniques and filtering material methods.However,the above-mentioned methods have problems such as poor PER and low measurement accuracy.To solve such problems,in this study,a 1024-channel spectrometry system using a Si-PIN photodetector was developed and fullspectrum measurement in the reference radiation fields was conducted for radiation protection.The measurement results using the few-channel spectroscopy dose method showed that the PER could be controlled within±14%and±2%under the conditions of two and three energy intervals,respectively,with different channel numbers.The PER measured at 0°angle of radiation incidence meets the-29%to+67%requirements of IEC 61526:2010.Meanwhile,the channel number and counts-to-dose conversion factors formed in the experiment can be integrated into an EPD.展开更多
For scanning transmission proton microscopy tomography,to compare cell images of the proton stopping power and relative electron density,two cell phantoms are designed and simulated by code FLUKA.The cell images are r...For scanning transmission proton microscopy tomography,to compare cell images of the proton stopping power and relative electron density,two cell phantoms are designed and simulated by code FLUKA.The cell images are reconstructed by the filtered back projection algorithm,and compared with their tomography imaging.The images of stopping power and relative electron density slightly vary with proton energies,but the internal images are of clear with high resolution.The organic glass image of relative electron density reveals the resolution power of proton tomography.Also,the simulation results reflect effects of the boundary enhancement,the weak artifacts,and the internal structure border extension by multiple scattering.So using proton tomography to analyze internal structure of a cell is a superior.展开更多
An electronic personal dosimeter mainly uses a Si-PIN photodiode as X-and gamma-ray detectors.The photon energy response of this instrument is inconsistent in the case of no correction,which seriously affects the accu...An electronic personal dosimeter mainly uses a Si-PIN photodiode as X-and gamma-ray detectors.The photon energy response of this instrument is inconsistent in the case of no correction,which seriously affects the accurate monitoring of personal dose equivalent H_p(10)parameters for radiation workers.For this reason,in this paper we propose a method of combining composite screen detection technology,multichannel measurement technology,and the channel ratio method to achieve accurate measurement of the personal dose equivalent parameters.According to China National Standard GB/T 13161-2003 and National Verification Regulation JJG 1009-2006,the instrument was tested in the energy range between 48 keV and 1.25 MeV.The experimental results showed that the difference of energy response to ^(137)C_S corrected by the new method was almost constant within ±6.0%,which fulfilled the ±30% requirement of GB/T 13161-2003 and JJG1009-2006.Meanwhile,the method proposed obtained energy information regarding the radiation field.展开更多
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金supported by the National Key Scientific Instruments to Develop Dedicated(Nos.2013YQ090811 and 2016YFF0103800)
文摘Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.
基金This work was partly supported by the National Key Scientific Instruments to Develop Dedicated Program(Nos.2013YQ090811 and 2016YFF0103800)the National Key Research and Development Program(No.2017YFF0211100).
文摘Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameters of EPDs based on the Si-PIN photodetectors include photon energy response(PER),angular response,inherent error,and dose rate linearity.Among them,PER is a key parameter for evaluation of EPD measurement accuracy.At present,owing to the limitations of volume,power consumption,and EPD cost,the PER is usually corrected by a combination of single-channel counting techniques and filtering material methods.However,the above-mentioned methods have problems such as poor PER and low measurement accuracy.To solve such problems,in this study,a 1024-channel spectrometry system using a Si-PIN photodetector was developed and fullspectrum measurement in the reference radiation fields was conducted for radiation protection.The measurement results using the few-channel spectroscopy dose method showed that the PER could be controlled within±14%and±2%under the conditions of two and three energy intervals,respectively,with different channel numbers.The PER measured at 0°angle of radiation incidence meets the-29%to+67%requirements of IEC 61526:2010.Meanwhile,the channel number and counts-to-dose conversion factors formed in the experiment can be integrated into an EPD.
基金Supported by National Natural Science Foundation(No.10775101)
文摘For scanning transmission proton microscopy tomography,to compare cell images of the proton stopping power and relative electron density,two cell phantoms are designed and simulated by code FLUKA.The cell images are reconstructed by the filtered back projection algorithm,and compared with their tomography imaging.The images of stopping power and relative electron density slightly vary with proton energies,but the internal images are of clear with high resolution.The organic glass image of relative electron density reveals the resolution power of proton tomography.Also,the simulation results reflect effects of the boundary enhancement,the weak artifacts,and the internal structure border extension by multiple scattering.So using proton tomography to analyze internal structure of a cell is a superior.
基金supported by the National Key Scientific Instruments To Develop Dedicated(2013YQ090811)
文摘An electronic personal dosimeter mainly uses a Si-PIN photodiode as X-and gamma-ray detectors.The photon energy response of this instrument is inconsistent in the case of no correction,which seriously affects the accurate monitoring of personal dose equivalent H_p(10)parameters for radiation workers.For this reason,in this paper we propose a method of combining composite screen detection technology,multichannel measurement technology,and the channel ratio method to achieve accurate measurement of the personal dose equivalent parameters.According to China National Standard GB/T 13161-2003 and National Verification Regulation JJG 1009-2006,the instrument was tested in the energy range between 48 keV and 1.25 MeV.The experimental results showed that the difference of energy response to ^(137)C_S corrected by the new method was almost constant within ±6.0%,which fulfilled the ±30% requirement of GB/T 13161-2003 and JJG1009-2006.Meanwhile,the method proposed obtained energy information regarding the radiation field.