Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characte...Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii–Moriya interaction(DMI)and discussed the potential applications in spin-wave devices.Here,the ground states and stabilities of the magnonic crystals were investigated.Then,the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied.The simulation results indicated that,the applied strain could manipulate the band widths and the positions of the allowed frequency bands.Finally,the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices,such as filters,diodes,and transistors based on strain-manipulated magnonic crystals were proposed.Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI.展开更多
TiNb_(2)O_(7)has been emerged as one of the most promising electrode materials for high-energy lithium-ion batteries.However,limited by the slow electron/ion transport kinetics,and insufficient active sites in the bul...TiNb_(2)O_(7)has been emerged as one of the most promising electrode materials for high-energy lithium-ion batteries.However,limited by the slow electron/ion transport kinetics,and insufficient active sites in the bulk structure,the TiNb_(2)O_(7)electrode still suffers from unsatisfactory lithium storage performance.Herein,we demonstrate a spatially confined strategy toward a novel TiNb_(2)O_(7)-NMC/MXene composite through a triblock copolymer-directed one-pot solvothermal route,where TiNb_(2)O_(7)quantum dots with a particle size of 2-3 nm are evenly embedded into N-doped mesoporous carbon(NMC)and Ti_(3)C_(2)T_(X)MXene.Impressively,the as-prepared TiNb_(2)O_(7)-NMC/MXene anode exhibits a high reversible capacity(486.2 mAh g^(-1)at 0.1 A g^(-1)after 100 cycles)and long cycle lifespan(363.4 mAh g^(-1)at ss1 A g^(-1)after 500 cycles).Both experimental and theorical results further demonstrate that such a superior lithium storage performance is mainly ascribed to the synergistic effect among 0D TiNb_(2)O_(7)quantum dots,2D Ti_(3)C_(2)T_(X)MXene nanosheets,and N-doped mesoporous carbon.The strategy presented also opens up new horizon for space-confined preparation of high-performance electrode materials.展开更多
Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the...Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p...In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.展开更多
A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave...A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A.展开更多
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding cent...We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.展开更多
The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backsca...The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.展开更多
Exploring novel two-dimensional(2D)valleytronic materials has an essential impact on the design of spintronic and valleytronic devices.Our first principles calculation results reveal that the Janus SWSiX_(2)(X=N,P,As)...Exploring novel two-dimensional(2D)valleytronic materials has an essential impact on the design of spintronic and valleytronic devices.Our first principles calculation results reveal that the Janus SWSiX_(2)(X=N,P,As)monolayer has excellent dynamical and thermal stability.Owing to strong spin–orbit coupling(SOC),the SWSiX_(2)monolayer exhibits a valence band spin splitting of up to 0.49 eV,making it promising 2D semiconductor for valleytronic applications.The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSiX2 monolayer.Moreover,the optical transition energies can be remarkably modulated by the in-plane strains.Large tensile(compressive)in-plane strains can achieve spin flipping in the SWSiN2 monolayer,and induce both SWSiP_(2)and SWSiAs_(2)monolayers transit from semiconductor to metal.Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices.展开更多
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re...There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.展开更多
A tightly linked dual ring antenna is designed,and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy(NV)center.The designed antenna operates at a center frequency ...A tightly linked dual ring antenna is designed,and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy(NV)center.The designed antenna operates at a center frequency of about 2.87 GHz,with a bandwidth of around 200 MHz,allowing it to address multiple resonance peaks in the optically detected magnetic resonance(ODMR)spectrum in an external magnetic field.Moreover,the antenna generates a fairly uniform magnetic field in a range with a radius of 0.75 mm.High resolution imaging of the magnetic field distribution on the surface of the antenna is conducted by using a fiber diamond probe.We also investigate the effect of magnetic field uniformity on the linewidth of ODMR,so as to provide insights into reducing the inhomogeneous broadening of ODMR.展开更多
As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites re...As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic...Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.展开更多
Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these network...Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these networks. The Page Rank algorithm, widely recognized for ranking web pages, offers a more nuanced approach by considering the importance of connected nodes. However, existing methods generally overlook the geometric properties of networks, which can provide additional insights into their structure and functionality. In this paper, we propose a novel method named Curv-Page Rank(C-PR), which integrates network curvature and Page Rank to identify influential nodes in complex networks. By leveraging the geometric insights provided by curvature alongside structural properties, C-PR offers a more comprehensive measure of a node's influence. Our approach is particularly effective in networks with community structures, where it excels at pinpointing bridge nodes critical for maintaining connectivity and facilitating information flow. We validate the effectiveness of C-PR through extensive experiments. The results demonstrate that C-PR outperforms traditional centrality-based and Page Rank methods in identifying critical nodes. Our findings offer fresh insights into the structural importance of nodes across diverse network configurations, highlighting the potential of incorporating geometric properties into network analysis.展开更多
Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in dif...Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency.展开更多
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a...A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.展开更多
Classification of quantum phases is one of the most important areas of research in condensed matter physics.In this work,we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning.Fi...Classification of quantum phases is one of the most important areas of research in condensed matter physics.In this work,we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning.Firstly,we choose two advanced unsupervised learning algorithms,namely,density-based spatial clustering of applications with noise(DBSCAN)and ordering points to identify the clustering structure(OPTICS),to explore the distinct phases of the Aubry–André–Harper model and the quasiperiodic p-wave model.The unsupervised learning results match well with those obtained through traditional numerical diagonalization.Finally,we assess similarity across different algorithms and find that the highest degree of similarity between the results of unsupervised learning algorithms and those of traditional algorithms exceeds 98%.Our work sheds light on applications of unsupervised learning for phase classification.展开更多
The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications a...The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications and services, anytime and anywhere. Wireless power transfer(WPT) is another promising technology to prolong the operation time of low-power wireless devices in the era of Internet of Things(IoT). However, the integration of WPT and UAV-enabled MEC systems is far from being well studied, especially in dynamic environments. In order to tackle this issue, this paper aims to investigate the stochastic computation offloading and trajectory scheduling for the UAV-enabled wireless powered MEC system. A UAV offers both RF wireless power transmission and computation services for IoT devices. Considering the stochastic task arrivals and random channel conditions, a long-term average energyefficiency(EE) minimization problem is formulated.Due to non-convexity and the time domain coupling of the variables in the formulated problem, a lowcomplexity online computation offloading and trajectory scheduling algorithm(OCOTSA) is proposed by exploiting Lyapunov optimization. Simulation results verify that there exists a balance between EE and the service delay, and demonstrate that the system EE performance obtained by the proposed scheme outperforms other benchmark schemes.展开更多
文摘Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii–Moriya interaction(DMI)and discussed the potential applications in spin-wave devices.Here,the ground states and stabilities of the magnonic crystals were investigated.Then,the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied.The simulation results indicated that,the applied strain could manipulate the band widths and the positions of the allowed frequency bands.Finally,the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices,such as filters,diodes,and transistors based on strain-manipulated magnonic crystals were proposed.Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI.
基金support from the Natural Science Foundation of Shanghai(23ZR1423800),Shuguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(18SG35)Open Research Fund of Shanghai Key Laboratory of Green Chemistry and Chemical Processes(East China Normal University)Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University.
文摘TiNb_(2)O_(7)has been emerged as one of the most promising electrode materials for high-energy lithium-ion batteries.However,limited by the slow electron/ion transport kinetics,and insufficient active sites in the bulk structure,the TiNb_(2)O_(7)electrode still suffers from unsatisfactory lithium storage performance.Herein,we demonstrate a spatially confined strategy toward a novel TiNb_(2)O_(7)-NMC/MXene composite through a triblock copolymer-directed one-pot solvothermal route,where TiNb_(2)O_(7)quantum dots with a particle size of 2-3 nm are evenly embedded into N-doped mesoporous carbon(NMC)and Ti_(3)C_(2)T_(X)MXene.Impressively,the as-prepared TiNb_(2)O_(7)-NMC/MXene anode exhibits a high reversible capacity(486.2 mAh g^(-1)at 0.1 A g^(-1)after 100 cycles)and long cycle lifespan(363.4 mAh g^(-1)at ss1 A g^(-1)after 500 cycles).Both experimental and theorical results further demonstrate that such a superior lithium storage performance is mainly ascribed to the synergistic effect among 0D TiNb_(2)O_(7)quantum dots,2D Ti_(3)C_(2)T_(X)MXene nanosheets,and N-doped mesoporous carbon.The strategy presented also opens up new horizon for space-confined preparation of high-performance electrode materials.
基金supported in part by the Xi’an Jiaotong-Liverpool University(XJTLU)Research Development Fund(2024–2027)under Grant RDF-23-02-010supported in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110732+5 种基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62071247supported in part by the Science and Technology Development Fund,Macao,China SAR under Grants 0087/2022/AFJ and 001/2024/SKLin part by the National Natural Science Foundation of China under Grant 62261160650in part by the Research Committee of University of Macao,Macao SAR,China under Grants MYRG-GRG2023-00116-FST-UMDF and MYRG2020-00095-FSTsupported in part by the NSFC under Grant 62261160576 and 62301148in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003.
文摘Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金supported in part by the National Natural Science Foundation of China under Grant 62271268,Grant 62071253,and Grant 62371252in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project。
文摘In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.
文摘A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A.
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.
文摘We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
文摘The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.
基金the National Natural Science Foundation of China(Grant Nos.62174088 and 62371238)。
文摘Exploring novel two-dimensional(2D)valleytronic materials has an essential impact on the design of spintronic and valleytronic devices.Our first principles calculation results reveal that the Janus SWSiX_(2)(X=N,P,As)monolayer has excellent dynamical and thermal stability.Owing to strong spin–orbit coupling(SOC),the SWSiX_(2)monolayer exhibits a valence band spin splitting of up to 0.49 eV,making it promising 2D semiconductor for valleytronic applications.The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSiX2 monolayer.Moreover,the optical transition energies can be remarkably modulated by the in-plane strains.Large tensile(compressive)in-plane strains can achieve spin flipping in the SWSiN2 monolayer,and induce both SWSiP_(2)and SWSiAs_(2)monolayers transit from semiconductor to metal.Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices.
基金supported by the National Science Foundation of China(No.U21A20450)Natural Science Foundation of Jiangsu Province Major Project(No.BK20192002)+1 种基金National Natural Science Foundation of China(No.61971440)National Natural Science Foundation of China(No.62271266).
文摘There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Shanghai Aerospace Science and Technology Innovation Fund(Grant No.SAST-2022-102).
文摘A tightly linked dual ring antenna is designed,and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy(NV)center.The designed antenna operates at a center frequency of about 2.87 GHz,with a bandwidth of around 200 MHz,allowing it to address multiple resonance peaks in the optically detected magnetic resonance(ODMR)spectrum in an external magnetic field.Moreover,the antenna generates a fairly uniform magnetic field in a range with a radius of 0.75 mm.High resolution imaging of the magnetic field distribution on the surface of the antenna is conducted by using a fiber diamond probe.We also investigate the effect of magnetic field uniformity on the linewidth of ODMR,so as to provide insights into reducing the inhomogeneous broadening of ODMR.
基金supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos.NY222167 and NY220005)。
文摘As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金This research was supported by Natural Science Foundation of Jiangsu Province(BK20220405)National Natural Science Foundation of China(21834004,22276100,22304086)+5 种基金Key Laboratory for Organic Electronics&Information Displays,NJUPT(GZR2022010010,GZR2023010045)Nanjing Science and Technology Innovation Project for Chinese Scholars Studying Abroad(NJKCZYZZ2022-01)Research Fund for Jiangsu Distinguished Professor(RK030STP22001)Natural Science Research Start-up Foundation of Recruiting Talents of NJUPT(NY221006,NY223051)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB150025)State Key Laboratory of Analytical Chemistry for Life Science,Nanjing University(SKLACLS2311).
文摘Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 61672298 and 62373197)the Major Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province,China (Grant No. 2018SJZDI142)the Postgraduate Research & Practice Innovation Program of Jiangsu Province,China (Grant No. KYCX23 1045)。
文摘Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these networks. The Page Rank algorithm, widely recognized for ranking web pages, offers a more nuanced approach by considering the importance of connected nodes. However, existing methods generally overlook the geometric properties of networks, which can provide additional insights into their structure and functionality. In this paper, we propose a novel method named Curv-Page Rank(C-PR), which integrates network curvature and Page Rank to identify influential nodes in complex networks. By leveraging the geometric insights provided by curvature alongside structural properties, C-PR offers a more comprehensive measure of a node's influence. Our approach is particularly effective in networks with community structures, where it excels at pinpointing bridge nodes critical for maintaining connectivity and facilitating information flow. We validate the effectiveness of C-PR through extensive experiments. The results demonstrate that C-PR outperforms traditional centrality-based and Page Rank methods in identifying critical nodes. Our findings offer fresh insights into the structural importance of nodes across diverse network configurations, highlighting the potential of incorporating geometric properties into network analysis.
文摘Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency.
基金Project supported by the Open Fund of Wuhan National Research Center for Optoelectronics(Grant No.2022WNLOKF012)the National College Students Innovation Innovation and Entrepreneurship Training Program(Grant No.2023102930147).
文摘A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.
基金Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY223109,NY220119,and NY221055)China Postdoctoral Science Foundation(Grant No.2022M721693)the National Natural Science Foundation of China(Grant No.12404365)。
文摘Classification of quantum phases is one of the most important areas of research in condensed matter physics.In this work,we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning.Firstly,we choose two advanced unsupervised learning algorithms,namely,density-based spatial clustering of applications with noise(DBSCAN)and ordering points to identify the clustering structure(OPTICS),to explore the distinct phases of the Aubry–André–Harper model and the quasiperiodic p-wave model.The unsupervised learning results match well with those obtained through traditional numerical diagonalization.Finally,we assess similarity across different algorithms and find that the highest degree of similarity between the results of unsupervised learning algorithms and those of traditional algorithms exceeds 98%.Our work sheds light on applications of unsupervised learning for phase classification.
基金supported in part by the U.S. National Science Foundation under Grant CNS-2007995in part by the National Natural Science Foundation of China under Grant 92067201,62171231in part by Jiangsu Provincial Key Research and Development Program under Grant BE2020084-1。
文摘The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications and services, anytime and anywhere. Wireless power transfer(WPT) is another promising technology to prolong the operation time of low-power wireless devices in the era of Internet of Things(IoT). However, the integration of WPT and UAV-enabled MEC systems is far from being well studied, especially in dynamic environments. In order to tackle this issue, this paper aims to investigate the stochastic computation offloading and trajectory scheduling for the UAV-enabled wireless powered MEC system. A UAV offers both RF wireless power transmission and computation services for IoT devices. Considering the stochastic task arrivals and random channel conditions, a long-term average energyefficiency(EE) minimization problem is formulated.Due to non-convexity and the time domain coupling of the variables in the formulated problem, a lowcomplexity online computation offloading and trajectory scheduling algorithm(OCOTSA) is proposed by exploiting Lyapunov optimization. Simulation results verify that there exists a balance between EE and the service delay, and demonstrate that the system EE performance obtained by the proposed scheme outperforms other benchmark schemes.