Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficie...Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficiency of energetic semiconductor bridge(ESCB) is the primary focus for large-scale engineering applications in the future. Here, the Al/CuO nano-film ESCB was efficiently fabricated using 3D direct writing. The electrostatic safety of the film is enhanced by precisely adjusting the particle size of Al, while ensuring that the SCB can initiate the film with small energy. The burst characteristics of SCB/ESCB were thoroughly investigated by employing a 100 μF tantalum capacitor to induce SCB and ESCB under an intense voltage gradient. The solid-state heating process of both SCB and ESCB was analyzed with multi physical simulation(MPS). The experimental results demonstrate that the critical burst time of both SCB and ESCB decreases with increasing voltage. Under the same voltage, the critical burst time of ESCB is longer than that of SCB, primarily due to differences in the melting to vaporization stage. The MPS results indicate that the highest temperature is observed at the V-shaped corner of SCB. Due to the thermal contact resistance between SCB and the film, heat conduction becomes more concentrated in the central region of the bridge, resulting in a faster solid-state heating process for ESCB compared to SCB.The results of the gap ignition experiments indicate that at a 19 mm gap, an ESCB with a film mass of 10 mg can ignite nickel hydrazine nitrate(NHN) and cyclotrimethylenetrinitramine(RDX). This suggests that thermite ESCB can serve as a novel, safe, and reliable energy exchange element and initiator in largescale engineering applications.展开更多
Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemi...Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
The storage stability of energetic materials is important for its application. Here, the storage stability of Al/CuO nanothermite, which was prepared by electrospray method and stored with different storage time, was ...The storage stability of energetic materials is important for its application. Here, the storage stability of Al/CuO nanothermite, which was prepared by electrospray method and stored with different storage time, was systematically researched. The activation energy of Al/CuO nanothermite was calculated by differential scanning calorimetry(DSC). The ignition temperature and the curve pressure history of Al/Cu O nanothermite was measured using ignition temperature measuring device and constant-volume pressurization tests, respectively. Further, the thermites were characterized by X-ray Diffractometer(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM) and Transmission electron microscopy(TEM). The results show that the morphology of the thermites did not change significantly. The activation energy was decreased from 254.1 k J/mol to 181.8 k J/mol after storage for 13 months. When stored for 0, 7 and 13 months, the peak pressures of Al/CuO nanothermite were 685.8 k Pa,626.3 k Pa and 625.5 k Pa, respectively. In addition to the ignition temperature, it was 775 ℃, 739 ℃ and754 ℃, respectively. This result indicated that the ignition and combustion properties of Al/CuO nanothermite are obviously reduced when stored for a long time, at room temperature.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092 and 52372084)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0709)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.30923010920)the State Key Laboratory of Transient Chemical Effects and Control,China,(Grant No.6142602230201).
文摘Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficiency of energetic semiconductor bridge(ESCB) is the primary focus for large-scale engineering applications in the future. Here, the Al/CuO nano-film ESCB was efficiently fabricated using 3D direct writing. The electrostatic safety of the film is enhanced by precisely adjusting the particle size of Al, while ensuring that the SCB can initiate the film with small energy. The burst characteristics of SCB/ESCB were thoroughly investigated by employing a 100 μF tantalum capacitor to induce SCB and ESCB under an intense voltage gradient. The solid-state heating process of both SCB and ESCB was analyzed with multi physical simulation(MPS). The experimental results demonstrate that the critical burst time of both SCB and ESCB decreases with increasing voltage. Under the same voltage, the critical burst time of ESCB is longer than that of SCB, primarily due to differences in the melting to vaporization stage. The MPS results indicate that the highest temperature is observed at the V-shaped corner of SCB. Due to the thermal contact resistance between SCB and the film, heat conduction becomes more concentrated in the central region of the bridge, resulting in a faster solid-state heating process for ESCB compared to SCB.The results of the gap ignition experiments indicate that at a 19 mm gap, an ESCB with a film mass of 10 mg can ignite nickel hydrazine nitrate(NHN) and cyclotrimethylenetrinitramine(RDX). This suggests that thermite ESCB can serve as a novel, safe, and reliable energy exchange element and initiator in largescale engineering applications.
基金the National Natural Science Foundation of China(Grant Nos.22275092,52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘The storage stability of energetic materials is important for its application. Here, the storage stability of Al/CuO nanothermite, which was prepared by electrospray method and stored with different storage time, was systematically researched. The activation energy of Al/CuO nanothermite was calculated by differential scanning calorimetry(DSC). The ignition temperature and the curve pressure history of Al/Cu O nanothermite was measured using ignition temperature measuring device and constant-volume pressurization tests, respectively. Further, the thermites were characterized by X-ray Diffractometer(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM) and Transmission electron microscopy(TEM). The results show that the morphology of the thermites did not change significantly. The activation energy was decreased from 254.1 k J/mol to 181.8 k J/mol after storage for 13 months. When stored for 0, 7 and 13 months, the peak pressures of Al/CuO nanothermite were 685.8 k Pa,626.3 k Pa and 625.5 k Pa, respectively. In addition to the ignition temperature, it was 775 ℃, 739 ℃ and754 ℃, respectively. This result indicated that the ignition and combustion properties of Al/CuO nanothermite are obviously reduced when stored for a long time, at room temperature.