Diderm bacteria,characterized by an additional lipid membrane layer known as the outer membrane,fold their outer membrane proteins(OMPs)via theβ-barrel assembly machinery(BAM)complex.Understanding how the BAM complex...Diderm bacteria,characterized by an additional lipid membrane layer known as the outer membrane,fold their outer membrane proteins(OMPs)via theβ-barrel assembly machinery(BAM)complex.Understanding how the BAM complex,particularly its key component BamA,assists in OMP folding remains crucial in bacterial cell biology.Recent research has focused primarily on the structural and functional characteristics of BamA within the Gracilicutes clade,such as in Escherichia coli(E.coli).However,another major evolutionary branch,Terrabacteria,has received comparatively less attention.An example of a Terrabacteria is Deinococcus radiodurans(D.radiodurans),a Gram-positive bacterium that possesses a distinctive outer membrane structure.In this study,we first demonstrated that theβ-barrel domains of BamA are not interchangeable between D.radiodurans and E.coli.The structure of D.radiodurans BamA was subsequently determined at 3.8Åresolution using cryo-electron microscopy,revealing obviously distinct arrangements of extracellular loop 4(ECL4)and ECL6 after structural comparison with their counterparts in gracilicutes.Despite the overall similarity in the topology of theβ-barrel domain,our results indicate that certain ECLs have evolved into distinct structures between the Terrabacteria and Gracilicutes clades.While BamA and its function are generally conserved across diderm bacterial species,our findings underscore the evolutionary diversity of this core OMP folder among bacteria,offering new insights into bacterial physiology and evolutionary biology.展开更多
Protein biosynthesis by the ribosome is a fundamental biological process in living systems.Recent studies sug-gest that ribosomal subunits also play essential roles in cell growth and differentiation beyond their role...Protein biosynthesis by the ribosome is a fundamental biological process in living systems.Recent studies sug-gest that ribosomal subunits also play essential roles in cell growth and differentiation beyond their roles in protein transla-tion.The ribosomal subunit RPS6 has been studied for more than 50 years in various organisms,but little is known about its specific roles in certain signaling pathways.In this study,we focused on the functions of Arabidopsis RPS6A in auxin-related root growth and development.The rps6a mutant presented a series of auxin-deficient phenotypes,such as shortened primary roots,reduced lateral root numbers,and defective vasculatures.Treatment of the rps6a mutant with various concentrations of auxin and its analogs did not restore the root defect phenotypes,suggesting a defect in the auxin signaling pathway.Further cell biological and global transcriptome analyses revealed that auxin signaling was weakened in the rps6a mutant and that there was a reduced abundance of PIN-FORMED(PIN)auxin transporters.Our work provides insights into the role of the protein biosynthesis pathway involved in auxin signaling.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(WK9100000063)the Fundamental Research Funds for the Central Universities(WK9100000031)+3 种基金the National Natural Science Foundation of China(32270035,32271241)the Anhui Provincial Natural Science Foundation(2208085MC40,2008085QC98)the Talent Fund Project of Biomedical Sciences and Health Laboratory of Anhui Province,University of Science and Technology of China(BJ9100000003)the start-up funding from the University of Science and Technology of China(KY9100000034,KJ2070000082).
文摘Diderm bacteria,characterized by an additional lipid membrane layer known as the outer membrane,fold their outer membrane proteins(OMPs)via theβ-barrel assembly machinery(BAM)complex.Understanding how the BAM complex,particularly its key component BamA,assists in OMP folding remains crucial in bacterial cell biology.Recent research has focused primarily on the structural and functional characteristics of BamA within the Gracilicutes clade,such as in Escherichia coli(E.coli).However,another major evolutionary branch,Terrabacteria,has received comparatively less attention.An example of a Terrabacteria is Deinococcus radiodurans(D.radiodurans),a Gram-positive bacterium that possesses a distinctive outer membrane structure.In this study,we first demonstrated that theβ-barrel domains of BamA are not interchangeable between D.radiodurans and E.coli.The structure of D.radiodurans BamA was subsequently determined at 3.8Åresolution using cryo-electron microscopy,revealing obviously distinct arrangements of extracellular loop 4(ECL4)and ECL6 after structural comparison with their counterparts in gracilicutes.Despite the overall similarity in the topology of theβ-barrel domain,our results indicate that certain ECLs have evolved into distinct structures between the Terrabacteria and Gracilicutes clades.While BamA and its function are generally conserved across diderm bacterial species,our findings underscore the evolutionary diversity of this core OMP folder among bacteria,offering new insights into bacterial physiology and evolutionary biology.
基金supported by the National Natural Science Foundation of China(32321001)the Forestry Bureau of Anhui Province(AHLYJBGS-2024-01)+3 种基金the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,the Division of Life Sciences and Medicine,the University of Science and Technology of China(QYPY20220012)the USTC Research Funds of the Double First-Class Initiative(YD9100002016)start-up funding from the University of Science and Technology of China and the Chinese Academy of Sciences(GG9100007007,KY9100000026,KY9100000051,KJ2070000079)the Fundamental Research Funds for the Central Universities(WK9100000021)。
文摘Protein biosynthesis by the ribosome is a fundamental biological process in living systems.Recent studies sug-gest that ribosomal subunits also play essential roles in cell growth and differentiation beyond their roles in protein transla-tion.The ribosomal subunit RPS6 has been studied for more than 50 years in various organisms,but little is known about its specific roles in certain signaling pathways.In this study,we focused on the functions of Arabidopsis RPS6A in auxin-related root growth and development.The rps6a mutant presented a series of auxin-deficient phenotypes,such as shortened primary roots,reduced lateral root numbers,and defective vasculatures.Treatment of the rps6a mutant with various concentrations of auxin and its analogs did not restore the root defect phenotypes,suggesting a defect in the auxin signaling pathway.Further cell biological and global transcriptome analyses revealed that auxin signaling was weakened in the rps6a mutant and that there was a reduced abundance of PIN-FORMED(PIN)auxin transporters.Our work provides insights into the role of the protein biosynthesis pathway involved in auxin signaling.