期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
1
作者 Shuo Chen Xiaohu Wu Ceji Fu 《Opto-Electronic Science》 2024年第6期1-19,共19页
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ... Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices. 展开更多
关键词 anisotropic phonon polaritons forbidden direction substrate with a negative permittivity near-field energy transport
在线阅读 下载PDF
Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
2
作者 王卫杰 赵振国 +2 位作者 赵艺 周海京 符策基 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期276-283,共8页
Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this ... Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide(Si C) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure,such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. 展开更多
关键词 silicon carbide radiative heat transfer photonic crystal optimization method
在线阅读 下载PDF
Atomic diffusion across Ni_(50)Ti_(50)Cu explosive welding interface:Diffusion layer thickness and atomic concentration distribution 被引量:1
3
作者 陈仕洋 武振伟 刘凯欣 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期446-451,共6页
Molecular dynamics simulations are carried out to study atomic diffusion in the explosive welding process of NisoTis0-Cu (at.%). By using a hybrid method which combines molecular dynamics simulation and classical di... Molecular dynamics simulations are carried out to study atomic diffusion in the explosive welding process of NisoTis0-Cu (at.%). By using a hybrid method which combines molecular dynamics simulation and classical diffusion the- ory, the thickness of the diffusion layer and the atomic concentration distribution across the welding interface are obtained. The results indicate that the concentration distribution curves at different times have a geometric similarity. According to the geometric similarity, the atomic concentration distribution at any time in explosive welding can be calculated. NisoTis0- Cu explosive welding and scanning electron microscope experiments are done to verify the results. The simulation results and the experimental results are in good agreement. 展开更多
关键词 DIFFUSION INTERFACES explosive welding molecular dynamics
在线阅读 下载PDF
A three-dimensional Eulerian method for the numerical simulation of high-velocity impact problems
4
作者 吴士玉 刘凯欣 陈千一 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期338-347,共10页
In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solut... In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solution element scheme for conservative hyperbolic governing equations with source terms is given. A modified ghost fluid method is proposed for the treatment of the boundary conditions. Numerical simulations of the Taylor bar problem and the ricochet phenomenon of a sphere impacting a plate target at an angle of 60~ are carried out. The numerical results are in good agreement with the corresponding experimental observations. It is proved that our computational technique is feasible for analyzing 3D high-velocity impact problems. 展开更多
关键词 three-dimensional numerical simulation conservation element and solution element (CE/SE)method ghost fluid method high-velocity impact
在线阅读 下载PDF
A New Method for Separation of Waves in Improving the Conventional SHPB Technique
5
作者 刘凯欣 李旭东 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第11期3045-3048,共4页
We present a new wave separation method to enable the split Hopkinson pressure bar (SHPB) technique to break through the limitation of the length of the incident bar and greatly to increase its measurable maximum st... We present a new wave separation method to enable the split Hopkinson pressure bar (SHPB) technique to break through the limitation of the length of the incident bar and greatly to increase its measurable maximum strain. At the same time the dispersion effect of the elastic wave is significantly reduced. The fundamental principle of the new method is proven rigorously. The feasibility and credibility of the new method are also verified by experiments. 展开更多
关键词 PRESSURE BAR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部