Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamm...Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
基金supported by the National Natural Science Foundation of China(60925005)
文摘Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.