期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A review of development methods and EOR technologies for carbonate reservoirs 被引量:15
1
作者 Zheng-Xiao Xu Song-Yan Li +3 位作者 Bin-Fei Li Dan-Qi Chen Zhong-Yun Liu Zhao-Min Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期990-1013,共24页
Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reserv... Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reservoirs are briefly described in this study.The development methods and EOR technologies of carbonate reservoirs are systematically summarized,the relevant mechanisms are analyzed,and the application status of oil fields is catalogued.The challenges in the development of carbonate reservoirs are discussed,and future research directions are explored.In the current development processes of carbonate reservoirs,water flooding and gas flooding remain the primary means but are often prone to channeling problems.Chemical flooding is an effective method of tertiary oil recovery,but the harsh formation conditions require high-performance chemical agents.The application of emerging technologies can enhance the oil recovery efficiency and environmental friendliness to a certain extent,which is welcome in hard-to-recover areas such as heavy oil reservoirs,but the economic cost is often high.In future research on EOR technologies,flow field control and flow channel plugging will be the potential directions of traditional development methods,and the application of nanoparticles will revolutionize the chemical EOR methods.On the basis of diversified reservoir stimulation,combined with a variety of modern data processing schemes,multichannel EOR technologies are being developed to realize the systematic,intelligent,and cost-effective development of carbonate reservoirs. 展开更多
关键词 Carbonate reservoir Reservoir stimulation Flow characteristic Development method EOR technology
在线阅读 下载PDF
Flow structure and rock-breaking feature of the self-rotating nozzle for radial jet drilling 被引量:3
2
作者 Hua-Lin Liao Xia Jia +3 位作者 Ji-Lei Niu Yu-Cai Shi Hong-Chen Gu Jun-Fu Xu 《Petroleum Science》 SCIE CAS CSCD 2020年第1期211-221,共11页
For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking feat... For improving the hole-enlarging capability,roundness and rock-breaking efficiency of the nozzle in radial jet drilling,a new structure of self-rotating nozzle was put forward.The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling.The results show that the self-rotating jet is energy concentrated,has longer effective distance,better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole,compared with the other two nozzles.Forward jet flow generated from the nozzle is peak shaped,and the jet velocity attenuates slowly at the outer edge.Due to periodic rotary percussion,the pressure fluctuates periodically on rock surface,improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency.The numerical simulation results of the flow structure of the nozzle are consistent with the experiments.This study provides an innovative approach for radial jet drilling technology in the petroleum industry. 展开更多
关键词 Self-rotating NOZZLE Flow field characteristic Numerical simulation Rock-breaking
在线阅读 下载PDF
Mechanism of active silica nanofluids based on interface-regulated effect during spontaneous imbibition 被引量:2
3
作者 Xu-Guang Song Ming-Wei Zhao +2 位作者 Cai-Li Dai Xin-Ke Wang Wen-Jiao Lv 《Petroleum Science》 SCIE CAS CSCD 2021年第3期883-894,共12页
The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by m... The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by modifed active silica nanoparticles and surfactant BSSB-12.The dispersion stability tests showed that the hydraulic radius of nanofuids was 58.59 nm and the zeta potential was−48.39 mV.The active nanofuids can simultaneously regulate liquid-liquid interface and solid-liquid interface.The nanofuids can reduce the oil/water interfacial tension(IFT)from 23.5 to 6.7 mN/m,and the oil/water/solid contact angle was altered from 42°to 145°.The spontaneous imbibition tests showed that the oil recovery of 0.1 wt%active nanofuids was 20.5%and 8.5%higher than that of 3 wt%NaCl solution and 0.1 wt%BSSB-12 solution.Finally,the efects of nanofuids on dynamic contact angle,dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofuids at solid-liquid and liquid-liquid interface.The oil detaching and transporting are completed by synergistic efect of wettability alteration and interfacial tension reduction.The fndings of this study can help in better understanding of active nanofuids for EOR in ultra-low permeability reservoirs. 展开更多
关键词 Active nanofuids Regulate interface Ultra-low permeability Spontaneous imbibition
在线阅读 下载PDF
Flow simulation considering adsorption boundary layer based on digital rock and finite element method 被引量:2
4
作者 Yong-Fei Yang Ke Wang +7 位作者 Qian-Fei Lv Roohollah Askari Qing-Yan Mei Jun Yao Jie-Xin Hou Kai Zhang Ai-Fen Li Chen-Chen Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第1期183-194,共12页
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara... Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats. 展开更多
关键词 Digital rock Low-permeability rocks CT technology Adsorption boundary layer Numerical simulation Finite element method
在线阅读 下载PDF
Stress release mechanism of deep bottom hole rock by ultra-high-pressure water jet slotting 被引量:1
5
作者 Hua-jian Wang Hua-Lin Liao +6 位作者 Jun Wei Jian-Sheng Liu Wen-Long Niu Yong-Wang Liu Zhi-Chuan Guan Hedi Sllami John-Paul Latham 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1828-1842,共15页
To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom... To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique. 展开更多
关键词 Hard rock SLOTTING Stress release Down hole pressures Poroelastic mechanics Fluid-structure Interaction Ultra-high-pressure water jet
在线阅读 下载PDF
Laponite:a promising nanomaterial to formulate high-performance water-based drilling fluids 被引量:1
6
作者 Xian-Bin Huang Jin-Sheng Sun +4 位作者 Yi Huang Bang-Chuan Yan Xiao-Dong Dong Fan Liu Ren Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第2期579-590,共12页
High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper ... High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition,plugging and lubrication performances.Shale inhibition performance was studied by linear swelling test and shale recovery test.Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope(SEM)observation.Extreme pressure lubricity test was used to evaluate the lubrication property.Experimental results show that laponite has good shale inhibition property,which is better than commonly used shale inhibitors,such as polyamine and KCl.Laponite can effectively plug shale pores.It considerably decreases the surface area and pore volume of shale,and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm.Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string.Besides,laponite can reduce the fluid loss volume.According to mechanism analysis,the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces. 展开更多
关键词 LAPONITE NANOPARTICLES High performance Drilling fluid Shale gas
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部