期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Eff ect of prescribed burning on the small-scale spatial heterogeneity of soil microbial biomass in Pinus koraiensis and Quercus mongolica forests of China
1
作者 Xu Dou Hongzhou Yu +4 位作者 Jianyu Wang Fei Li Qi Liu Long Sun Tongxin Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期609-622,共14页
Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns ... Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems. 展开更多
关键词 Prescribed burn Soil microbial biomass Spatial heterogeneity Temperate forest
在线阅读 下载PDF
Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis 被引量:1
2
作者 Meng Ji Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2459-2471,共13页
Investigating the effects of ontogenetic stage and leaf age on leaf traits is important for understanding the utilization and distribution of resources in the process of plant growth.However,few studies have been cond... Investigating the effects of ontogenetic stage and leaf age on leaf traits is important for understanding the utilization and distribution of resources in the process of plant growth.However,few studies have been conducted to show how traits and trait-trait relationships change across a range of ontogenetic stage and leaf age for evergreen coniferous species.We divided 67 Pinus koraiensis Sieb.et Zucc.of various sizes(0.3-100 cm diameter at breast height,DBH)into four ontogenetic stages,i.e.,young trees,middle-aged trees,mature trees and over-mature trees,and measured the leaf mass per area(LMA),leaf dry matter content(LDMC),and mass-based leaf nitrogen content(N)and phosphorus content(P)of each leaf age group for each sampled tree.One-way analysis of variance(ANOVA)was used to describe the variation in leaf traits by ontogenetic stage and leaf age.The standardized major axis method was used to explore the effects of ontogenetic stage and leaf age on trait-trait relationships.We found that LMA and LDMC increased significantly and N and P decreased significantly with increases in the ontogenetic stage and leaf age.Most trait-trait relationships were consistent with the leaf economic spectrum(LES)at a global scale.Among them,leaf N content and LDMC showed a significant negative correlation,leaf N and P contents showed a significant positive correlation,and the absolute value of the slopes of the trait-trait relationships showed a gradually increasing trend with an increasing ontogenetic stage.LMA and LDMC showed a significant positive correlation,and the slopes of the trait-trait relationships showed a gradually decreasing trend with leaf age.Additionally,there were no significant relationships between leaf N content and LMA in most groups,which is contrary to the expectation of the LES.Overall,in the early ontogenetic stages and leaf ages,the leaf traits tend to be related to a"low investment-quick returns"resource strategy.In contrast,in the late ontogenetic stages and leaf ages,they tend to be related to a"high investment-slow returns"resource strategy.Our results reflect the optimal allocation of resources in Pinus koraiensis according to its functional needs during tree and leaf ontogeny. 展开更多
关键词 Leaf age Leaf dry matter content Leaf mass per area Leaf nitrogen content Leaf phosphorus content Ontogenetic stage Pinus koraiensis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部