Soybean white mold(SWM) caused by Sclerotinia sclerotiorum is a serious disease of soybean and other plant, which is mainly distributed in the soybean producing areas of north China, east China, southwest and northeas...Soybean white mold(SWM) caused by Sclerotinia sclerotiorum is a serious disease of soybean and other plant, which is mainly distributed in the soybean producing areas of north China, east China, southwest and northeast China. The tolerance of soybean to sclerotium is partial resistance(quantitative trait), which is controlled by multiple genes. Mapping QTL and identifying candidate genes underlying soybean tolerance to SWM can accelerate the process of breeding for disease-resistant varieties. In the present study, a total of 128 lines derived from the susceptible soybean cultivar Hefeng25 and the disease tolerant soybean cultivar Maple Arrow were evaluated by in vitro and in vivo inoculation methods. A total of 78 SSR markers were used to construct linkage groups(D1 a(Chr.01), A2(Chr.08), B1(Chr.11) and F(Chr.13)) which intensively distributed SWM resistance related QTLs. Five QTLs were detected through combining two sets of phenotypic data with the composite interval mapping(CIM) method. A total of seven candidate genes located in the five QTLs were induced by Sclerotinia sclerotiorum. The SSR markers and candidate genes associated with tolerance to Sclerotinia sclerotiorum could be helpful for SWM resistance breeding in soybean.展开更多
As one of the secondary metabolites,the isoflavones formed during the development of soybean[Glycine max(L.)Merr.]seeds.The total and individual isoflavone contents,a typical quantitative trait,were affected by signif...As one of the secondary metabolites,the isoflavones formed during the development of soybean[Glycine max(L.)Merr.]seeds.The total and individual isoflavone contents,a typical quantitative trait,were affected by significant genotypes of environments(GE)interaction and controlled by many genes with main or minor effects.In the present study,99 soybean cultivars,collected from northeastern China,were used to analyze the isoflavone performances.Genotype-genotype×environment(GGE)biplot software demonstrated an ability to provide information on genetic main effects than solely on phenotypic perform.Highperformance liquid chromatography(HPLC)system was used to extract and determine the isoflavone contents.The results indicated that most genotypes significantly varied among six tested environments.P40(Xiaolimoshidou)was the best-performed genotype with mean performance and stability for glycitein content across six different environments.P88(L-59Peking)was the super genotype with mean performance and stability on each tested environment for daidzein,genistein and the total isoflavone.E5(Gongzhuling in 2016)was the best environment for optimal environmental factor mining.P70(Charleston),P67(Baichengmoshidou)and P50(Jiunong 20)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for genistein.P70(Charleston),P67(Baichengmoshidou)and P14(Hefeng 25)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for daidzein.P40(Xiaolimoshidou),P45(Jinshanchamodou),P33(Dongnong 48)and P56(L-5)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for glycitein.P70(Charleston)and P67(Baichengmoshidou)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for the total isoflavone.GGE biplot was a rational method for stability and adaptation evaluation of soybean isoflavones,and could assist soybean breeder to select a good culture and a suitable tested site.It provided a scientific basis for the establishment of a breeding site and a selection site of soybean isoflavones.This study was valuable to identify genotypes with stable performances of isoflavones of these 99 cultivars for developing new cultivars.展开更多
Soybean(Glycine max)is short-day(SD)plant.Flowering time is a key agronomic trait that determines the transition from vegetative to reproductive growth.The study on the expression and regulation mechanism of flowering...Soybean(Glycine max)is short-day(SD)plant.Flowering time is a key agronomic trait that determines the transition from vegetative to reproductive growth.The study on the expression and regulation mechanism of flowering time gene in soybean photoperiod control of flowering pathway is particularly theoretically significant for soybean genetic improvement.In this study,a dual-luciferase reporter gene system with the GmFT2a gene promoter as promoter sequence was constructed,and the method of Agrobacterium tumefaciens injection into tobacco leaves was selected to study the effects of long and short days on the activity of the GmFT2a gene promoter.The results of transient expression analysis showed that the GmFT2a promoter was strongly induced under the SD conditions in tobacco.Furthermore,analysis of the GmFT2a promoter sequence revealed several cis-acting elements,including G-Box,Box 4,GT1-motif and TCT-motif by PlantCARE search.It was speculated that these elements might promote the expression of GmFT2a gene in the SDs and played a role in promoting flowering.The results of this study provided a basis for a better understanding of the function of the GmFT2a gene and further exploration of the complex flowering mechanism of soybean.展开更多
Microsatellite marker (or Simple Sequence Repeate, SSR) is a marker technology based on DNA molecular length poly morphism. It is also one of the most commonly used molecular markers. Traditional SSR marker developm...Microsatellite marker (or Simple Sequence Repeate, SSR) is a marker technology based on DNA molecular length poly morphism. It is also one of the most commonly used molecular markers. Traditional SSR marker development methods are relatively time-consuming and mostly relying on the known genome sequence information while recently developed methods of SSR marker based on RAPD, ISSR-PCR SSR, the use of hybrid options, sequence tag SSR library access and screening EST-SSR have been widely used. This paper gave an overview of the methods mentioned above for the development of SSR markers.展开更多
Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins ar...Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins are key members of the SKP1/Cullin/F-box protein(SCF)ubiquitin ligase complex and play diverse roles in plant biology.However,the role of SKP1 in soybean against the phytopathogenic oomycete P.sojae remains unclear.In this study,a novel member of the soybean SKP1 gene family,GmSKP1 which was significantly induced by P.sojae,was reported.The expression of GmSKP1 was simultaneously induced by methyl jasmonate(MeJA),salicylic acid(SA)and ethylene(ET),which might suggest an important role for GmSKP1 of plant in responses to hormone treatments.Functional analysis using GmSKP1 overexpression lines showed that GmSKP1 enhanced resistance to P.sojae in transgenic soybean plants.Further analyses showed that GmSKP1 interacted with a homeodomain-leucine zipper protein transcription factor(GmHDL56)and a WRKY transcription factor(GmWRKY31),which could positively regulate responses to P.sojae in soybean.Importantly,several pathogenesis-related(PR)genes were constitutively activated,including GmPR1a,GmPR2,GmPR3,GmPR4,GmPR5a and GmPR10,in GmSKP1-OE soybean plants.Taken together,these results suggested that GmSKP1 enhanced resistance to P.sojae in soybean,possibly by activating the defense-related PR genes.展开更多
基金Supported by the Youth Innovation Talent Project of the General Undergraduate Universities in Heilongjiang Province(UNPYSCT-2016145)
文摘Soybean white mold(SWM) caused by Sclerotinia sclerotiorum is a serious disease of soybean and other plant, which is mainly distributed in the soybean producing areas of north China, east China, southwest and northeast China. The tolerance of soybean to sclerotium is partial resistance(quantitative trait), which is controlled by multiple genes. Mapping QTL and identifying candidate genes underlying soybean tolerance to SWM can accelerate the process of breeding for disease-resistant varieties. In the present study, a total of 128 lines derived from the susceptible soybean cultivar Hefeng25 and the disease tolerant soybean cultivar Maple Arrow were evaluated by in vitro and in vivo inoculation methods. A total of 78 SSR markers were used to construct linkage groups(D1 a(Chr.01), A2(Chr.08), B1(Chr.11) and F(Chr.13)) which intensively distributed SWM resistance related QTLs. Five QTLs were detected through combining two sets of phenotypic data with the composite interval mapping(CIM) method. A total of seven candidate genes located in the five QTLs were induced by Sclerotinia sclerotiorum. The SSR markers and candidate genes associated with tolerance to Sclerotinia sclerotiorum could be helpful for SWM resistance breeding in soybean.
基金Supported by Heilongjiang Provincial Project(Topic JC2018007)
文摘As one of the secondary metabolites,the isoflavones formed during the development of soybean[Glycine max(L.)Merr.]seeds.The total and individual isoflavone contents,a typical quantitative trait,were affected by significant genotypes of environments(GE)interaction and controlled by many genes with main or minor effects.In the present study,99 soybean cultivars,collected from northeastern China,were used to analyze the isoflavone performances.Genotype-genotype×environment(GGE)biplot software demonstrated an ability to provide information on genetic main effects than solely on phenotypic perform.Highperformance liquid chromatography(HPLC)system was used to extract and determine the isoflavone contents.The results indicated that most genotypes significantly varied among six tested environments.P40(Xiaolimoshidou)was the best-performed genotype with mean performance and stability for glycitein content across six different environments.P88(L-59Peking)was the super genotype with mean performance and stability on each tested environment for daidzein,genistein and the total isoflavone.E5(Gongzhuling in 2016)was the best environment for optimal environmental factor mining.P70(Charleston),P67(Baichengmoshidou)and P50(Jiunong 20)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for genistein.P70(Charleston),P67(Baichengmoshidou)and P14(Hefeng 25)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for daidzein.P40(Xiaolimoshidou),P45(Jinshanchamodou),P33(Dongnong 48)and P56(L-5)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for glycitein.P70(Charleston)and P67(Baichengmoshidou)were the optimal genotypes with the highest field among 99 cultivars on each tested environment for the total isoflavone.GGE biplot was a rational method for stability and adaptation evaluation of soybean isoflavones,and could assist soybean breeder to select a good culture and a suitable tested site.It provided a scientific basis for the establishment of a breeding site and a selection site of soybean isoflavones.This study was valuable to identify genotypes with stable performances of isoflavones of these 99 cultivars for developing new cultivars.
基金Supported by Chinese National Natural Science Foundation(32072086,31771820)Heilongjiang Province Natural Science Foundation(C2015009)。
文摘Soybean(Glycine max)is short-day(SD)plant.Flowering time is a key agronomic trait that determines the transition from vegetative to reproductive growth.The study on the expression and regulation mechanism of flowering time gene in soybean photoperiod control of flowering pathway is particularly theoretically significant for soybean genetic improvement.In this study,a dual-luciferase reporter gene system with the GmFT2a gene promoter as promoter sequence was constructed,and the method of Agrobacterium tumefaciens injection into tobacco leaves was selected to study the effects of long and short days on the activity of the GmFT2a gene promoter.The results of transient expression analysis showed that the GmFT2a promoter was strongly induced under the SD conditions in tobacco.Furthermore,analysis of the GmFT2a promoter sequence revealed several cis-acting elements,including G-Box,Box 4,GT1-motif and TCT-motif by PlantCARE search.It was speculated that these elements might promote the expression of GmFT2a gene in the SDs and played a role in promoting flowering.The results of this study provided a basis for a better understanding of the function of the GmFT2a gene and further exploration of the complex flowering mechanism of soybean.
文摘Microsatellite marker (or Simple Sequence Repeate, SSR) is a marker technology based on DNA molecular length poly morphism. It is also one of the most commonly used molecular markers. Traditional SSR marker development methods are relatively time-consuming and mostly relying on the known genome sequence information while recently developed methods of SSR marker based on RAPD, ISSR-PCR SSR, the use of hybrid options, sequence tag SSR library access and screening EST-SSR have been widely used. This paper gave an overview of the methods mentioned above for the development of SSR markers.
基金Supported by the NSFC Projects(31971972)the Natural Science Foundation of Heilongjiang Province(ZD2019C001)the Outstanding Talents and Innovative Team of Agricultural Scientific Research。
文摘Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins are key members of the SKP1/Cullin/F-box protein(SCF)ubiquitin ligase complex and play diverse roles in plant biology.However,the role of SKP1 in soybean against the phytopathogenic oomycete P.sojae remains unclear.In this study,a novel member of the soybean SKP1 gene family,GmSKP1 which was significantly induced by P.sojae,was reported.The expression of GmSKP1 was simultaneously induced by methyl jasmonate(MeJA),salicylic acid(SA)and ethylene(ET),which might suggest an important role for GmSKP1 of plant in responses to hormone treatments.Functional analysis using GmSKP1 overexpression lines showed that GmSKP1 enhanced resistance to P.sojae in transgenic soybean plants.Further analyses showed that GmSKP1 interacted with a homeodomain-leucine zipper protein transcription factor(GmHDL56)and a WRKY transcription factor(GmWRKY31),which could positively regulate responses to P.sojae in soybean.Importantly,several pathogenesis-related(PR)genes were constitutively activated,including GmPR1a,GmPR2,GmPR3,GmPR4,GmPR5a and GmPR10,in GmSKP1-OE soybean plants.Taken together,these results suggested that GmSKP1 enhanced resistance to P.sojae in soybean,possibly by activating the defense-related PR genes.