期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Space Materials Science in China:Ⅱ.Ground-based Researches and Academic Activities
1
作者 PAN Mingxiang WANG Weihua +14 位作者 FAN Shuqian ZHANG Qi PAN Xiuhong DENG Weijie HU Liang WEI Bingbo WANG Haipeng YIN Zhigang FANG Jinghong YU Jianding ZHANG Xingwang YUAN Zhangfu JIANG Hongxiang ZHAO Jiuzhou WANG Gong 《空间科学学报》 CAS CSCD 北大核心 2020年第5期950-955,共6页
Activities of space materials science research in China have been continuously supported by two main national programs.One is the China Space Station(CSS)program since 1992,and the other is the Strategic Priority Prog... Activities of space materials science research in China have been continuously supported by two main national programs.One is the China Space Station(CSS)program since 1992,and the other is the Strategic Priority Program(SPP)on Space Science since 2011.In CSS plan in 2019,eleven space materials science experimental projects were officially approved for execution during the construction of the space station.In the SPP Phase Ⅱ launched in 2018,seven pre-research projects are deployed as the first batch in 2018,and one concept study project in 2019.These pre-research projects will be cultivated as candidates for future selection as space experiment projects on the recovery of scientific experimental satellites in the future.A new apparatus of electrostatic levitation system for ground-based research of space materials science and rapid solidification research has been developed under the support of the National Natural Science Foundation of China.In order to promote domestic academic activities and to enhance the advancement of space materials science in China,the Space Materials Science and Technology Division belong to the Chinese Materials Research Society was established in 2019.We also organized scientists to write five review papers on space materials science as a special topic published in the journal Scientia Sinica to provide valuable scientific and technical references for Chinese researchers. 展开更多
关键词 Additive manufacturing Aerogel preparation Electrostatic levitation system Crystal growth Solidification Academic activities of space materials science
在线阅读 下载PDF
Influence of Yb_2O_3 doping on microstructural and electrical properties of ZnO-Bi_2O_3-based varistor ceramics 被引量:6
2
作者 徐东 唐冬梅 +3 位作者 林元华 焦雷 赵国平 程晓农 《Journal of Central South University》 SCIE EI CAS 2012年第6期1497-1502,共6页
ZnO-Bi2O3-based varistor ceramics doped with Yb2O3 in the range from 0 to 0.4% (molar fraction) were obtained by a solid reaction route. The X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were... ZnO-Bi2O3-based varistor ceramics doped with Yb2O3 in the range from 0 to 0.4% (molar fraction) were obtained by a solid reaction route. The X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were applied to characterize the phases and microstructure of the varistor ceramics, and a DC parameter instrument for varistor ceramics was applied to investigate their electrical properties and V-I characteristics. The XRD analysis of the samples shows that the ZnO phase, Bi2O3 phase, ZnTSbaOl2-type spinel phase and Zn2Bi3Sb3O14-type pyrochlore are present, and the Yb2O3 phases and Sb2O4 phases are found in varistor ceramics with increasing amounts of Yb2O3. The average size of ZnO grain firstly increases and then decreases with the increase of Yb2O3 content. The result also shows that the threshold voltage is between 656 V/nun and 1 232 V/mm, the nonlinear coefficient is in the range of 14.1-22.3, and the leakage current is between 0.60 μA and 19.6 μA. The 0.20% Yb2O3-added ZnO-Bi2O3-based varistor ceramics sintered at 900 ℃ have the best electrical characteristics. 展开更多
关键词 varistor ceramics zinc oxide Yb203 microstructure electrical properties
在线阅读 下载PDF
Comparative characteristics of yttrium oxide and yttrium nitric acid doping in ZnO varistor ceramics 被引量:4
3
作者 徐东 唐冬梅 +3 位作者 焦雷 袁宏明 赵国平 程晓农 《Journal of Central South University》 SCIE EI CAS 2012年第8期2094-2100,共7页
The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this dopi... The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3. 展开更多
关键词 CERAMICS VARISTOR rare earth microstructure electrical properties
在线阅读 下载PDF
Progress in Research on Materials Under Microgravity in China
4
作者 CHEN Nuofu CHEN Wanchun LUO Xinghong YE Yude 《空间科学学报》 CAS CSCD 北大核心 2004年第z1期138-149,共12页
Research on materials under microgravity in China began in the 1980s, sparked by Prof. Lanying Lin (academician of CAS), Prof. Xiji Wang (academician of CAS), Prof. Guirong Min (academician of CAS), and Prof. Huabao L... Research on materials under microgravity in China began in the 1980s, sparked by Prof. Lanying Lin (academician of CAS), Prof. Xiji Wang (academician of CAS), Prof. Guirong Min (academician of CAS), and Prof. Huabao Lin (academician of CAS), and others. The first semiconductor crystal, first optical crystal, and first alloys were grown in space on board a recoverable satellite in 1987. Since then, microgravity materials science became a new scientific branch in China.Scientific and technical activities on space crystal growth and solidification are carried out through two major programs: ground-based studies and orbital experiments. The main results obtained during 2001-2003 are reported below. 展开更多
关键词 Microgravity Semiconductor Metal CRYSTAL
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部