To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were invest...To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti205 and soot, the content of water vapor and SO2 in exhaust, and the repeated use on catalytic activity of K2Ti205 were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti205 had high catalytic activity and good stability.展开更多
The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4...The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4.9 V) is found to be in good agreement with experiments. From the analysis of electronic structure, the pure phase Li2MnO3 is insulating, which is indicative of poor electronic-conduction properties. However, further studies of lithium ion diffusion in bulk Li2MnO3 show that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials, lithium can diffuse in a three-dimensional pathway in Li2MnO3, with moderate lithium migration energy barrier ranges from 0.57 to 0.63 e V.展开更多
Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed ...Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevating higher quality of FCC gasoline in the future.展开更多
K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and L...K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and LiOH-H2O as starting materials and were characterized by X-ray diffractometry, scanning electron microscopy, and BET. The catalytic activity of titanate catalysts on PM oxidation was evaluated using the temperature programmed oxidation (TPO) method. The test results showed that the perovskite structure of K2Ti205 was still retained after doping a small amount of Li, and the catalytic performance of LixK2-xTi2O5 had been improved significantly compared with that of K2Ti2O5. Li0.15K1.85Ti205 catalyst had the highest catalytic activity with an ignition temperature of 210℃ and a peak temperature of 290℃. The catalytic activity of both K2Ti2O5 and LixK2-xTi2O5 under intimate contact was higher than that under loose contact. When the exhaust gas flow rate was around 100 mL/min, the catalyst samples showed a highest activity. The Li doped K2Ti2O5 could be an excellent candidate for PM oxidation due to its high oxidation activity, water stability, resistance to sulfur poisoning and economical advantages.展开更多
基金the financial supports provided for this research by the Education Department of Liaoning Province of China(No.2009T061)the Ministry of Education of China(No.[2010]1561)
文摘To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti205 and soot, the content of water vapor and SO2 in exhaust, and the repeated use on catalytic activity of K2Ti205 were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti205 had high catalytic activity and good stability.
基金Supported by the National Natural Science Foundation of China under Grant No 21363016the Natural Science Foundation of Jiangxi Province under Grant No 20142BAB216030the PhD Early Development Program of Nanchang Hangkong University under Grant No EA201502007
文摘The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4.9 V) is found to be in good agreement with experiments. From the analysis of electronic structure, the pure phase Li2MnO3 is insulating, which is indicative of poor electronic-conduction properties. However, further studies of lithium ion diffusion in bulk Li2MnO3 show that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials, lithium can diffuse in a three-dimensional pathway in Li2MnO3, with moderate lithium migration energy barrier ranges from 0.57 to 0.63 e V.
基金financially supported by the National Natural Science Foundation of China (Nos. U1662135 and 21376114, 21076100)by the China National Petroleum Corporation (Grant No. 1001A-01-01-01)
文摘Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevating higher quality of FCC gasoline in the future.
基金supports provided for this research by the Education Department of Liaoning Province of China (No. 2009T061)Ministry of Education of China (No. [2010] 1561)
文摘K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and LiOH-H2O as starting materials and were characterized by X-ray diffractometry, scanning electron microscopy, and BET. The catalytic activity of titanate catalysts on PM oxidation was evaluated using the temperature programmed oxidation (TPO) method. The test results showed that the perovskite structure of K2Ti205 was still retained after doping a small amount of Li, and the catalytic performance of LixK2-xTi2O5 had been improved significantly compared with that of K2Ti2O5. Li0.15K1.85Ti205 catalyst had the highest catalytic activity with an ignition temperature of 210℃ and a peak temperature of 290℃. The catalytic activity of both K2Ti2O5 and LixK2-xTi2O5 under intimate contact was higher than that under loose contact. When the exhaust gas flow rate was around 100 mL/min, the catalyst samples showed a highest activity. The Li doped K2Ti2O5 could be an excellent candidate for PM oxidation due to its high oxidation activity, water stability, resistance to sulfur poisoning and economical advantages.