In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time ...In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time of pre-ionization, pulse rise time, and the pre-ionization jitter are discussed and verified through experiments. It indicates that the pre-ionization should be injected when the electric field is high enough in the gap, injection after 80% peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter, which is an intrinsic restriction of the self-triggered switch. However, when the changing rate of the pulsed electric field exceeds a certain value, the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field. Therefore, lower time jitter can be obtained under pulses with a shorter pulse rise time. In general, the results of the calculation model agree with the experimental results, and the experimental parameters which lead to a low jitter can also be used as a reference.展开更多
This work investigates the pulsed breakdown processes and mechanisms of self-triggered preionized switches with a four-electrode structure in nitrogen through intensified charge coupled device photographs.The diameter...This work investigates the pulsed breakdown processes and mechanisms of self-triggered preionized switches with a four-electrode structure in nitrogen through intensified charge coupled device photographs.The diameter of the trigger plane hole mainly determines the switch’s electric field distribution.Two configurations with minimum and maximum trigger plane holes are adopted for comparison.In the switch with a minimum trigger plane hole,the maximum electric field distributes at the surfaces of the main electrodes.Although charged particles in the triggering spark channel cannot drift out,homogeneous discharges can be stimulated from both the cathode and anode surfaces through ultraviolet illumination.Two sub-gaps are likely to break down simultaneously.In the switch with a maximum trigger plane hole,the maximum electric field locates near the trigger electrodes.Discharges in both sub-gaps initiate from the trigger electrodes in the form of a positive or negative streamer.Due to the lower breakdown voltage and electric field threshold for discharge initiation,the cathode side sub-gap breaks down first.The analysis of two extreme examples can be referenced in the future design and improvement of self-triggered four-electrode switches with different trigger electrode structures.展开更多
Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific d...Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.展开更多
Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstru...Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.展开更多
MV pulsed switch plays a key role as the transfer switch in large electromagnetic pulse simulators. To broaden the range of self-triggering time, a novel spark-discharge pre-ionization switch, in which the main gap el...MV pulsed switch plays a key role as the transfer switch in large electromagnetic pulse simulators. To broaden the range of self-triggering time, a novel spark-discharge pre-ionization switch, in which the main gap electric field is superposed at the trigger gap to let the electrons in its spark channel also become initial electrons, is proposed and tested. The design idea is: as electrons in the spark channel of the trigger gap always exist after its breakdown, the injection time of pre-ionization should have a more negligible effect on reducing the switch jitter. The experiment results under pulses with a rise time of ~100 ns support the above assumptions.When the operating voltage is from ~300 to ~800 kV and the self-triggering time is ~45% to~75% of the peak time, the breakdown time delay jitter is less than 2 ns, and the breakdown voltage jitter is smaller than 1.25%. Under specific self-triggering time, the breakdown time delay jitter is less than 1.5 ns, and the breakdown voltage jitter is smaller than 0.8%.展开更多
文摘In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time of pre-ionization, pulse rise time, and the pre-ionization jitter are discussed and verified through experiments. It indicates that the pre-ionization should be injected when the electric field is high enough in the gap, injection after 80% peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter, which is an intrinsic restriction of the self-triggered switch. However, when the changing rate of the pulsed electric field exceeds a certain value, the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field. Therefore, lower time jitter can be obtained under pulses with a shorter pulse rise time. In general, the results of the calculation model agree with the experimental results, and the experimental parameters which lead to a low jitter can also be used as a reference.
文摘This work investigates the pulsed breakdown processes and mechanisms of self-triggered preionized switches with a four-electrode structure in nitrogen through intensified charge coupled device photographs.The diameter of the trigger plane hole mainly determines the switch’s electric field distribution.Two configurations with minimum and maximum trigger plane holes are adopted for comparison.In the switch with a minimum trigger plane hole,the maximum electric field distributes at the surfaces of the main electrodes.Although charged particles in the triggering spark channel cannot drift out,homogeneous discharges can be stimulated from both the cathode and anode surfaces through ultraviolet illumination.Two sub-gaps are likely to break down simultaneously.In the switch with a maximum trigger plane hole,the maximum electric field locates near the trigger electrodes.Discharges in both sub-gaps initiate from the trigger electrodes in the form of a positive or negative streamer.Due to the lower breakdown voltage and electric field threshold for discharge initiation,the cathode side sub-gap breaks down first.The analysis of two extreme examples can be referenced in the future design and improvement of self-triggered four-electrode switches with different trigger electrode structures.
基金supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043)。
文摘Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.
基金supported by Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)(No.7191005)。
文摘Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.
文摘MV pulsed switch plays a key role as the transfer switch in large electromagnetic pulse simulators. To broaden the range of self-triggering time, a novel spark-discharge pre-ionization switch, in which the main gap electric field is superposed at the trigger gap to let the electrons in its spark channel also become initial electrons, is proposed and tested. The design idea is: as electrons in the spark channel of the trigger gap always exist after its breakdown, the injection time of pre-ionization should have a more negligible effect on reducing the switch jitter. The experiment results under pulses with a rise time of ~100 ns support the above assumptions.When the operating voltage is from ~300 to ~800 kV and the self-triggering time is ~45% to~75% of the peak time, the breakdown time delay jitter is less than 2 ns, and the breakdown voltage jitter is smaller than 1.25%. Under specific self-triggering time, the breakdown time delay jitter is less than 1.5 ns, and the breakdown voltage jitter is smaller than 0.8%.