It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility.Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image...It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility.Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved,while at the same time the signal-to-noise ratio(SNR)and visibility are greatly improved,without adding complexity.The dependence of the SNR,visibility,and resolution on the number of iterations is also investigated and discussed.Moreover,with the use of compressed sensing the sampling number can be reduced to less than 1%of the Nyquist limit,while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.展开更多
We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before i...We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.展开更多
A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering o...A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities.In a lensless GI experiment performed with spatial bandpass filtering,the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10.The resolution depends on the bandwidth of the filter,and the relationship between the two is investigated and discussed.In combination with compressed sensing programming,not only high resolution can be maintained but also image quality can be improved,while a much lower sampling number is sufficient.展开更多
Based on probability density functions,we present a theoretical model to explain filtered ghost imaging(FGI)we first proposed and experimentally demonstrated in 2017[Opt.Lett.425290(2017)].An analytic expression for t...Based on probability density functions,we present a theoretical model to explain filtered ghost imaging(FGI)we first proposed and experimentally demonstrated in 2017[Opt.Lett.425290(2017)].An analytic expression for the joint intensity probability density functions of filtered random speckle fields is derived according to their probability distributions.Moreover,the normalized second-order intensity correlation functions are calculated for the three cases of low-pass,bandpass and high-pass filterings to study the resolution and visibility in the FGI system.Numerical simulations show that the resolution and visibility predicted by our model agree well with the experimental results,which also explains why FGI can achieve a super-resolution image and better visibility than traditional ghost imaging.展开更多
We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals wi...We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device.Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain.The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity,enabling the transformation of Hadamard matrices and image reconstruction through data processing alone.Therefore,this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system,without the need for additional hardware.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302)the National Natural Science Foundation of China(Grant No.61975229)Civil Space Project(Grant No.D040301)。
文摘It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility.Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved,while at the same time the signal-to-noise ratio(SNR)and visibility are greatly improved,without adding complexity.The dependence of the SNR,visibility,and resolution on the number of iterations is also investigated and discussed.Moreover,with the use of compressed sensing the sampling number can be reduced to less than 1%of the Nyquist limit,while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204117,11304007,and 60907031)the China Postdoctoral Science Foundation(Grant No.2013M540146)+1 种基金the Fund from the Education Department of Liaoning Province,China(Grant No.L2012001)the National HiTech Research and Development Program of China(Grant No.2013AA122902)
文摘We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFB0504302 and 2017YFB0503301)Defense Industrial Technology Development Program(Grant No.D040301-1)。
文摘A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities.In a lensless GI experiment performed with spatial bandpass filtering,the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10.The resolution depends on the bandwidth of the filter,and the relationship between the two is investigated and discussed.In combination with compressed sensing programming,not only high resolution can be maintained but also image quality can be improved,while a much lower sampling number is sufficient.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302)the Project of Innovation and Entrepreneurship Training Program for college students of Liaoning University(Grant No.S202110140003)。
文摘Based on probability density functions,we present a theoretical model to explain filtered ghost imaging(FGI)we first proposed and experimentally demonstrated in 2017[Opt.Lett.425290(2017)].An analytic expression for the joint intensity probability density functions of filtered random speckle fields is derived according to their probability distributions.Moreover,the normalized second-order intensity correlation functions are calculated for the three cases of low-pass,bandpass and high-pass filterings to study the resolution and visibility in the FGI system.Numerical simulations show that the resolution and visibility predicted by our model agree well with the experimental results,which also explains why FGI can achieve a super-resolution image and better visibility than traditional ghost imaging.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB0504302)。
文摘We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device.Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain.The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity,enabling the transformation of Hadamard matrices and image reconstruction through data processing alone.Therefore,this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system,without the need for additional hardware.