The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial directi...The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.展开更多
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract...The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.展开更多
The behaviors of the precipitation and decomposition of carbides in AISI M2 high-speed steel modified by nitrogen and mischmetal were investigated using DSC, XRD, SEM and TEM. The as-cast microstructure of the experim...The behaviors of the precipitation and decomposition of carbides in AISI M2 high-speed steel modified by nitrogen and mischmetal were investigated using DSC, XRD, SEM and TEM. The as-cast microstructure of the experimental steel consists of dendrites of iron matrix, networks of eutectic carbides and secondary carbides. The average distance between networks is about 34 μm. The carbides mainly include M_2C, M(C,N) and M_6C, and their relative contents are 58.5%, 30.3% and 11.2%, respectively. The average spacing between the M_2C fibers is 1.5 μm. The decomposition of M_2C occurs from 897.2 to 1221.5 ℃(heating rate of 200 ℃/h). Some precipitated carbide particles occur in the M_2C matrix after holding for 15 min at 1100 ℃. With increasing holding time, the carbide fibers neck down more and more obviously until they are broken down. The spectral peaks of M_2C almost disappear after holding for 60 min. The spectral peaks of M_6C gradually strengthen with the holding time, and the relative content of M_6C increases to 79.8% after holding for 60 min. After holding for 180 min, the carbide fibers disappear, and the decomposition products consist of fine carbide particles(about 300 nm) and short rod-like carbides(about 3.5 μm).展开更多
A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spin...A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.展开更多
Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the tra...Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the traditional and improved hydraulic bulging processes were conducted.The grid strain measurement system analysis results of strain and wall thickness distribution of the metal bellows,obtained from simulation and experiment,show that the maximum thinning rates of the wall thickness under the traditional and improved processes were 15%and 10%,respectively.And the wall thickness distribution of the metal bellows formed with improved process was more uniform.The strain values from the root to crown of the waveform increased gradually.However,the strain values were smaller than those of traditional process due to the axial feeding of the improved process in bulging process.展开更多
Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variatio...Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.展开更多
For the drum of hot rolling coiler is prone to be easily destroyed, the type of MMU-5G abrasion tester was applied to revealing the friction and wear behavior. The morphology observation by scanning electron microscop...For the drum of hot rolling coiler is prone to be easily destroyed, the type of MMU-5G abrasion tester was applied to revealing the friction and wear behavior. The morphology observation by scanning electron microscope (SEM) demonstrates the wear mechanism of the drum, and the test data of the influence coefficient of the normal pressure, relative sliding speed and surface lubrication conditions acted on the linear rate of the wear could be obtained by the regression method. A calculation model, which considers the factors of the structure of the drum, coiling tension and coiling strip specifications, was established by the combination method to predict the wear life of the drum. Then the practical production data was applied into this model and the analysis result was in good accordance with that of actual production.展开更多
A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this...A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects.展开更多
A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP...A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.展开更多
Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential...Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys.展开更多
Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated ...Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated by casting-cold extrusion was simulated by DEFORM software using tubes with four arc grooves. The stress and strain in different deformation zones were analyzed. The groove size reduces gradually and the groove shape drives to triangle during the extrusion procedure. The maximum values of equivalent effective stress and radial stress appear in groove zones, and the maximum equivalent effective strain firstly is obtained also in groove zones. The grain size in groove zones is less than that in other zones. The experimental results are consistent with simulation results, which prove that the copper tubes with sketch section are favorable to the metallurgy bond of boundary interface between aluminum and copper.展开更多
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re...Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).展开更多
The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, a...The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.展开更多
In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new ...In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.展开更多
The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volu...The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volume fraction of nitrogen in shielding gas, arc holding time and arc current on the nitrogen content in the welding metal were also evaluated. The results show that the volume fraction of nitrogen in gas mixture plays a major role in controlling the nitrogen content in the welding metal. It seems that there exhibits a maximum nitrogen content (depending) on the arc current and arc holding time. The optimum volume fraction of nitrogen in shielding gas is 4% or so. The role of gas tungsten arc welding processing parameters in controlling the transfer of nitrogen is further (confirmed) by the experimental results of gas tungsten arc welding process with feeding metal.展开更多
In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was estab...In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was established. The work roll and backup roll were considered as elastic continuous bodies that were joined by a Winkler elastic layer. According to Euler-Bemoulli beam theory, the forced transverse vibration of rolls was analyzed based on modal superposition method. The forced vibration equations were established when the draught pressure and moment of bending roll force were imposed on the rolls respectively. Numerical modeling was made on 2 030 mm cold tandem rolling mill of Baoshan Iron and Steel Company. Simulation results show that when the work roll is only subjected to different forms of draught pressures, the vibration curves of work roll and backup roll are quadratic curves with amplitudes of 0.3 mm and 45 μm, respectively. When only the moments of bending roll force are imposed on the work roll and backup roll, the vibration curves of work roll and backup roll are quadratic curves, and the amplitudes are 5.0 and 1.6 μm, respectively. The influence of moment of bending roll force on the vibration of work roll is related with the bending roll force.展开更多
基金Project(E2012203177)supported by the Natural Science Foundation of Hebei Province,ChinaProject(2011BAF15B01)supported by the National Science and Technology Support Plan of China+1 种基金Project(E2006001038)supported by Great Natural Science Foundation of Hebei Province,ChinaProject(NECSR-201202)supported by Open Project Program of National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,China
文摘The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.
基金Project(51675465)supported by the National Natural Science Foundation of ChinaProject(E2019203075)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BJ2019001)supported by the Top Young Talents Project of the Education Department of Hebei Province,ChinaProject(Kfkt2017-07)supported by the State Key Laboratory Program of High Performance Complex Manufacturing,China。
文摘The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.
基金Project(E2016203256)supported by the Natural Science Foundation of Hebei Province,China
文摘The behaviors of the precipitation and decomposition of carbides in AISI M2 high-speed steel modified by nitrogen and mischmetal were investigated using DSC, XRD, SEM and TEM. The as-cast microstructure of the experimental steel consists of dendrites of iron matrix, networks of eutectic carbides and secondary carbides. The average distance between networks is about 34 μm. The carbides mainly include M_2C, M(C,N) and M_6C, and their relative contents are 58.5%, 30.3% and 11.2%, respectively. The average spacing between the M_2C fibers is 1.5 μm. The decomposition of M_2C occurs from 897.2 to 1221.5 ℃(heating rate of 200 ℃/h). Some precipitated carbide particles occur in the M_2C matrix after holding for 15 min at 1100 ℃. With increasing holding time, the carbide fibers neck down more and more obviously until they are broken down. The spectral peaks of M_2C almost disappear after holding for 60 min. The spectral peaks of M_6C gradually strengthen with the holding time, and the relative content of M_6C increases to 79.8% after holding for 60 min. After holding for 180 min, the carbide fibers disappear, and the decomposition products consist of fine carbide particles(about 300 nm) and short rod-like carbides(about 3.5 μm).
基金Project(51775479)supported by the National Natural Science Foundation of ChinaProject(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.
基金Project (51775479) supported by the National Natural Science Foundation of ChinaProject (E2017203046) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the traditional and improved hydraulic bulging processes were conducted.The grid strain measurement system analysis results of strain and wall thickness distribution of the metal bellows,obtained from simulation and experiment,show that the maximum thinning rates of the wall thickness under the traditional and improved processes were 15%and 10%,respectively.And the wall thickness distribution of the metal bellows formed with improved process was more uniform.The strain values from the root to crown of the waveform increased gradually.However,the strain values were smaller than those of traditional process due to the axial feeding of the improved process in bulging process.
文摘Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.
基金Project(2009AA04Z143) supported by the National High Technology Research and Development Program of ChinaProject(E2006001038) supported by the Major Program of the Natural Science Foundation of Hebei Province, China
文摘For the drum of hot rolling coiler is prone to be easily destroyed, the type of MMU-5G abrasion tester was applied to revealing the friction and wear behavior. The morphology observation by scanning electron microscope (SEM) demonstrates the wear mechanism of the drum, and the test data of the influence coefficient of the normal pressure, relative sliding speed and surface lubrication conditions acted on the linear rate of the wear could be obtained by the regression method. A calculation model, which considers the factors of the structure of the drum, coiling tension and coiling strip specifications, was established by the combination method to predict the wear life of the drum. Then the practical production data was applied into this model and the analysis result was in good accordance with that of actual production.
基金Project(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects.
基金Foundation item: Project(2009AA04Z143) supported by the National High Technology Research and Development Program of ChinaProject (E2011203004) supported by Natural Science Foundation of Hebei Province, ChinaProjects(2011BAF15B03, 2011BAF15B02) supported by the National Science Plan of China
文摘A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.
基金Projects(11790282,U1534204,11572267,51804202,51705344)supported by the National Natural Science Foundation of ChinaProject(E2019210292)supported by the Natural Science Foundation of Hebei Province,China+6 种基金Project(A2019210204)supported by the National Natural Science Foundation for Distinguished Young Scholars,ChinaProject(KQTD20170810160424889)supported by the Shenzhen Peacock Team Program,ChinaProject(2019DB013)supported by the Key Research Project of Southern Xinjiang,ChinaProject(C201821)supported by the High Level Talent Support Project in Hebei,ChinaProject supported by the Youth Top-notch Talents Supporting Plan of Hebei Province,ChinaProject(MCMS-E-0519G04)supported by the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,ChinaProject(201919)supported by the Open Fund of State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,China。
文摘Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys.
文摘Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated by casting-cold extrusion was simulated by DEFORM software using tubes with four arc grooves. The stress and strain in different deformation zones were analyzed. The groove size reduces gradually and the groove shape drives to triangle during the extrusion procedure. The maximum values of equivalent effective stress and radial stress appear in groove zones, and the maximum equivalent effective strain firstly is obtained also in groove zones. The grain size in groove zones is less than that in other zones. The experimental results are consistent with simulation results, which prove that the copper tubes with sketch section are favorable to the metallurgy bond of boundary interface between aluminum and copper.
基金Project(101048) supported by Fok Ying Tung Education FoundationProject(E2008000835) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).
基金Projects(50435010 50705080 50675187) supported by the National Natural Science Foundation of China
文摘The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.
基金Projects(50471102,50671089) supported by the National Natural Science Foundation of China
文摘In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.
基金Project(59771001) supported by the National Natural Science Foundation of China
文摘The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volume fraction of nitrogen in shielding gas, arc holding time and arc current on the nitrogen content in the welding metal were also evaluated. The results show that the volume fraction of nitrogen in gas mixture plays a major role in controlling the nitrogen content in the welding metal. It seems that there exhibits a maximum nitrogen content (depending) on the arc current and arc holding time. The optimum volume fraction of nitrogen in shielding gas is 4% or so. The role of gas tungsten arc welding processing parameters in controlling the transfer of nitrogen is further (confirmed) by the experimental results of gas tungsten arc welding process with feeding metal.
基金Project(50875231) supported by the National Natural Science Foundation of ChinaProject(E2006001038) supported by Great Natural Science Foundation of Hebei Province, China
文摘In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was established. The work roll and backup roll were considered as elastic continuous bodies that were joined by a Winkler elastic layer. According to Euler-Bemoulli beam theory, the forced transverse vibration of rolls was analyzed based on modal superposition method. The forced vibration equations were established when the draught pressure and moment of bending roll force were imposed on the rolls respectively. Numerical modeling was made on 2 030 mm cold tandem rolling mill of Baoshan Iron and Steel Company. Simulation results show that when the work roll is only subjected to different forms of draught pressures, the vibration curves of work roll and backup roll are quadratic curves with amplitudes of 0.3 mm and 45 μm, respectively. When only the moments of bending roll force are imposed on the work roll and backup roll, the vibration curves of work roll and backup roll are quadratic curves, and the amplitudes are 5.0 and 1.6 μm, respectively. The influence of moment of bending roll force on the vibration of work roll is related with the bending roll force.