The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "F...The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "FeNi+Ti", "FeNi+G_(3)N_(6)H_(6)",and "FeNi+Ti+C_(3)N_(6)H_(6)".Optical microscopy,infrared spectroscopy,and photoluminescence(PL)spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems.From our analysis,it was demonstrated that the presence of hydrogen in the sp^(3) hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy(NV) center concentration in a highnitrogen-content diamond.In addition,titanium plays an important role in nitrogen removal,while its impact on hydrogen doping within the diamond lattice is insignificant.Most importantly,by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment,the production of hydrogenous Ⅱa-type diamond,hydrogenous Ib-type diamond,and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.展开更多
Diamond crystals were synthesized with different doping proportions of N-H-O at 5.5 GPa-7.1 GPa and 1370℃-1450℃. With the increase in the N-H-O doping ratio, the crystal growth rate decreased, the temperature and pr...Diamond crystals were synthesized with different doping proportions of N-H-O at 5.5 GPa-7.1 GPa and 1370℃-1450℃. With the increase in the N-H-O doping ratio, the crystal growth rate decreased, the temperature and pressure conditions required for diamond nucleation became increasingly stringent, and the diamond crystallization process was affected. [111] became the dominant plane of diamonds;surface morphology became block-like;and growth texture,stacking faults, and etch pits increased. The diamond crystals had a two-dimensional growth habit. Increasing the doping concentration also increased the amount of N that entered the diamond crystals as confirmed via Fourier transform infrared spectroscopy. However, crystal quality gradually deteriorated as verified by the red-shifting of Raman peak positions and the widening of the Raman full width at half maximum. With the increase in the doping ratio, the photoluminescence property of the diamond crystals also drastically changed. The intensity of the N vacancy center of the diamond crystals changed, and several Ni-related defect centers, such as the NE1 and NE3 centers, appeared. Diamond synthesis in N-H-O-bearing fluid provides important information for deepening our understanding of the growth characteristics of diamonds in complex systems and the formation mechanism of natural diamonds, which are almost always N-rich and full of various defect centers. Meanwhile, this study proved that the type of defect centers in diamond crystals could be regulated by controlling the N-H-O impurity contents of the synthesis system.展开更多
Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the developme...Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.展开更多
We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical...We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy(XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy(FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm^(2)·V^(-1)·s^(-1), possible reasons were discussed in the paper.展开更多
The Ag2O film, as-dcposited by direct-current magnetron reactive sputtering at a substrate temperature of 150 ℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the...The Ag2O film, as-dcposited by direct-current magnetron reactive sputtering at a substrate temperature of 150 ℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the thermal decomposition temperature to about 200℃, which is helpful to its application in optical and magneto-optical storage. This paper fits its optical constants in terms of a general oscillator model by using measured ellipsometric parameters. The fitted oscillator energy 2.487 eV is close to the optical direct interband transition energy value of the Ag2O film determined by Tauc equation; whereas, the fitted oscillator energy 4.249 eV is far from the fitted plasma oscillator energy 4.756 eV by single-oscillator energy. The photoluminescence spectrum centred at about 2.31 eV indicates a direct-energy gap photoluminescence mechanism of the Ag2O film.展开更多
Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature ...Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.展开更多
The synergistic influences of boron,oxygen,and titanium on growing large single-crystal diamonds are studied using different concentrations of B_(2)O_(3) in a solvent-carbon system under 5.5 GPa-5.7 GPa and 1300℃-150...The synergistic influences of boron,oxygen,and titanium on growing large single-crystal diamonds are studied using different concentrations of B_(2)O_(3) in a solvent-carbon system under 5.5 GPa-5.7 GPa and 1300℃-1500℃.It is found that the boron atoms are difficult to enter into the crystal when boron and oxygen impurities are doped using B_(2)O_(3) without the addition of Ti atoms.However,high boron content is achieved in the doped diamonds that were synthesized with the addition of Ti.Additionally,boron-oxygen complexes are found on the surface of the crystal,and oxygen-related impurities appear in the crystal interior when Ti atoms are added into the FeNi-C system.The results show that the introduction of Ti atoms into the synthesis cavity can effectively control the number of boron atoms and the number of oxygen atoms in the crystal.This has important scientific significance not only for understanding the synergistic influence of boron,oxygen,and titanium atoms on the growth of diamond in the earth,but also for preparing the high-concentration boron or oxygen containing semiconductor diamond technologies.展开更多
Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work re...Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.展开更多
To elucidate the regulation mechanism of catalyst geometry structure to diamond growth,we establish three catalyst modes with different structures.The simulation results show that with the decrease of the protruding h...To elucidate the regulation mechanism of catalyst geometry structure to diamond growth,we establish three catalyst modes with different structures.The simulation results show that with the decrease of the protruding height of the catalyst,the low-temperature region gradually moves toward the center of the catalyst,which causes the distribution characteristics of the temperature and convection field in the catalyst to change.The temperature difference in vertical direction of the catalyst decreases gradually and increases in the horizontal direction,while the catalyst convection velocity has the same variation regularity in the corresponding directions.The variation of temperature difference and convection velocity lead the crystal growth rate in different crystal orientations to change,which directly affects the crystal morphology of the synthetic diamond.The simulation results are consistent with the experimental results,which shows the correctness of the theoretical rational analysis.This work is expected to be able to facilitate the understanding of catalyst structure regulation mechanism on diamond morphology and the providing of an important theoretical basis for the controllable growth of special crystal shape diamond under HPHT process.展开更多
The temperature in the high-pressure high-temperature(HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density Zn O ceramic, Zn_(0.98)Al_(0.02)O. X-ray diffraction, scanning electron micro...The temperature in the high-pressure high-temperature(HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density Zn O ceramic, Zn_(0.98)Al_(0.02)O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material.High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6×10^(4) S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor(6.42 μW·cm^(-1)·K^(-2)) and dimensionless figure of merit(z T = 0.09) are obtained when Zn_(0.98)Al_(0.02)O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.展开更多
Pyrite tailings are the main cause of acid mine wastewater.We propose an idea to more effectively use pyrite,and it is modified by exploiting the reducibility of metal represented by Al under high-pressure and high-te...Pyrite tailings are the main cause of acid mine wastewater.We propose an idea to more effectively use pyrite,and it is modified by exploiting the reducibility of metal represented by Al under high-pressure and high-temperature(HPHT)conditions.Upon increasing the Al addition,the conductivity of pyrite is effectively improved,which is nearly 734 times higher than that of unmodified pyrite at room temperature.First-principles calculations are used to determine the influence of a high pressure on the pyrite lattice.The high pressure increases the thermal stability of pyrite,reduces pyrite to highconductivity Fe7S8(pyrrhotite)by Al.Through hardness and density tests the influence of Al addition on the hardness and toughness of samples is explored.Finally we discuss the possibility of using other metal-reducing agents to improve the properties of pyrite.展开更多
Microcrystalline silicon (μc-Si:H) thin films with and without boron doping are deposited using the radio-frequency plasma-enhanced chemical vapour deposition method. The surface roughness evolutions of the silico...Microcrystalline silicon (μc-Si:H) thin films with and without boron doping are deposited using the radio-frequency plasma-enhanced chemical vapour deposition method. The surface roughness evolutions of the silicon thin films are investigated using ex situ spectroscopic ellipsometry and an atomic force microscope. It is shown that the growth exponentβ and the roughness exponent cχ are about 0.369 and 0.95 for the undoped thin film, respectively. Whereas, for the boron-doped μc-Si:H thin film, t3 increases to 0.534 and cχ decreases to 0.46 due to the shadowing effect.展开更多
MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are...MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated.The batteries measured in the 1 M ZnSO4^-1 M MgSO4 electrolyte outplay other competitors,which deliver a high specific capacity of 374 mAh g^-1 at a current density of 100 mA g^-1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g^-1 at 5 A g^-1.This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.展开更多
In conventional ethylene carbonate(EC)/propylene carbonate(PC)electrolyte,sodium metal reacts spontaneously and deleteriously with solvent molecules.This significantly limits the practical feasibility of high-voltage ...In conventional ethylene carbonate(EC)/propylene carbonate(PC)electrolyte,sodium metal reacts spontaneously and deleteriously with solvent molecules.This significantly limits the practical feasibility of high-voltage sodium metal batteries based on Na metal chemistry.Herein,we present a sodium metal alloy strategy via introducing NaIn and Na_(2)In phases in a Na/In/C composite,aiming at boosting Na ion deposition stability in the common EC/PC electrolyte.Symmetric cells with Na/In/C electrodes achieve an impressive long-term cycling capability at 1 mA cm^(-2)(>870 h)and 5 mA cm^(-2)(>560 h),respectively,with a capacity of 1 mAh cm^(-2).In situ optical microscopy clearly unravels a stable Na ion dynamic deposition process on the Na/In/C composite electrode surface,attributing to a dendrite-free and smooth morphology.Furthermore,theoretical simulations reveal intrinsic mechanism for the reversible Na ion deposition behavior with the composite Na/In/C electrode.Upon pairing with a highvoltage NaVPOF cathode,Na/In/C anode illustrates a better suitability in SMB s.This work promises an alternative alloying strategy for enhancing Na metal interfacial stability in the common EC/PC electrolyte for their future applications.展开更多
Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfac...Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs.展开更多
A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO s...A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn 〉 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn 〈 1.0%.展开更多
Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for...Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 12274373 and 12004341)the Open Project of Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials,Chifeng University (Grant No. cfxygy202301)+1 种基金the Science and Technology Project of Xilinguole Province (Grant No. 202209)the Natural Science Foundation of Henan Province (Grant No. 242300421155)。
文摘The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "FeNi+Ti", "FeNi+G_(3)N_(6)H_(6)",and "FeNi+Ti+C_(3)N_(6)H_(6)".Optical microscopy,infrared spectroscopy,and photoluminescence(PL)spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems.From our analysis,it was demonstrated that the presence of hydrogen in the sp^(3) hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy(NV) center concentration in a highnitrogen-content diamond.In addition,titanium plays an important role in nitrogen removal,while its impact on hydrogen doping within the diamond lattice is insignificant.Most importantly,by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment,the production of hydrogenous Ⅱa-type diamond,hydrogenous Ib-type diamond,and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 11604246, 51872112, and 11804305)the Project of Jilin Science and Technology Development Plan (Grant No. 20180201079GX)+1 种基金the Fundamental Research Funds for the Central Universities, the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxm X0391)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901405)。
文摘Diamond crystals were synthesized with different doping proportions of N-H-O at 5.5 GPa-7.1 GPa and 1370℃-1450℃. With the increase in the N-H-O doping ratio, the crystal growth rate decreased, the temperature and pressure conditions required for diamond nucleation became increasingly stringent, and the diamond crystallization process was affected. [111] became the dominant plane of diamonds;surface morphology became block-like;and growth texture,stacking faults, and etch pits increased. The diamond crystals had a two-dimensional growth habit. Increasing the doping concentration also increased the amount of N that entered the diamond crystals as confirmed via Fourier transform infrared spectroscopy. However, crystal quality gradually deteriorated as verified by the red-shifting of Raman peak positions and the widening of the Raman full width at half maximum. With the increase in the doping ratio, the photoluminescence property of the diamond crystals also drastically changed. The intensity of the N vacancy center of the diamond crystals changed, and several Ni-related defect centers, such as the NE1 and NE3 centers, appeared. Diamond synthesis in N-H-O-bearing fluid provides important information for deepening our understanding of the growth characteristics of diamonds in complex systems and the formation mechanism of natural diamonds, which are almost always N-rich and full of various defect centers. Meanwhile, this study proved that the type of defect centers in diamond crystals could be regulated by controlling the N-H-O impurity contents of the synthesis system.
基金the support from the Thousand Young Talents Program of Chinathe National Natural Science Foundation of China(Nos.51602200,61874074,21603192)+3 种基金Science and Technology Project of Shenzhen(JCYJ20170817101100705,JCYJ20170817100111548,ZDSYS201707271014468)the(Key)Project of Department of Education of Guangdong Province(No.2016KZDXM008)supported by Shenzhen Peacock Plan(No.KQTD2016053112042971)Singapore Ministry of Education Academic Research Fund Tier 2(MOE2018-T2-2-178).
文摘Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries.However,the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes.Herein,we have rationally engineered the heterointerface by designing the Fe1?xS/MoS2 heterostructure with abundant“ion reservoir”to endow the electrode with excellent cycling stability and rate capability,which is proved by a series of in and ex situ electrochemical investigations.Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics.Our present findings not only provide a deep analysis on the correlation between the structure and performance,but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 11704340, 11604246, and 11865005)the Scientific and Technological Project in Henan Province+2 种基金China (Grant No. 202102210198)the Natural Science Foundation of Guangxi (China)(Grant No. 2018GXNSFAA281024)Doctor Start-up Foundation of Guangxi University of Science and Technology (Grant No. 20Z38)。
文摘We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy(XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy(FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm^(2)·V^(-1)·s^(-1), possible reasons were discussed in the paper.
基金supported by the National Natural Science Foundation of China (Grant No.60807001)Foundation of Henan Educational Committee (Grant No.2010A140017)
文摘The Ag2O film, as-dcposited by direct-current magnetron reactive sputtering at a substrate temperature of 150 ℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the thermal decomposition temperature to about 200℃, which is helpful to its application in optical and magneto-optical storage. This paper fits its optical constants in terms of a general oscillator model by using measured ellipsometric parameters. The fitted oscillator energy 2.487 eV is close to the optical direct interband transition energy value of the Ag2O film determined by Tauc equation; whereas, the fitted oscillator energy 4.249 eV is far from the fitted plasma oscillator energy 4.756 eV by single-oscillator energy. The photoluminescence spectrum centred at about 2.31 eV indicates a direct-energy gap photoluminescence mechanism of the Ag2O film.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)the National Basic Research Program of China (Grant No. 2011CB201605)
文摘Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.
基金supported by the National Natural Science Foundation of China(Grant Nos.11804305,12004341,11704340,and 12004342)the Key Research Project of Higher Education Institution of Henan Province,China(Grant No.19A140006)+2 种基金the Scientific and Technological Project in Henan Province,China(Grant No.202102210198)the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyjmsxmX0391)the Science and Technology Research Program of Chongqing Municipal Education Commission,China(Grant No.KJQN201901405)。
文摘The synergistic influences of boron,oxygen,and titanium on growing large single-crystal diamonds are studied using different concentrations of B_(2)O_(3) in a solvent-carbon system under 5.5 GPa-5.7 GPa and 1300℃-1500℃.It is found that the boron atoms are difficult to enter into the crystal when boron and oxygen impurities are doped using B_(2)O_(3) without the addition of Ti atoms.However,high boron content is achieved in the doped diamonds that were synthesized with the addition of Ti.Additionally,boron-oxygen complexes are found on the surface of the crystal,and oxygen-related impurities appear in the crystal interior when Ti atoms are added into the FeNi-C system.The results show that the introduction of Ti atoms into the synthesis cavity can effectively control the number of boron atoms and the number of oxygen atoms in the crystal.This has important scientific significance not only for understanding the synergistic influence of boron,oxygen,and titanium atoms on the growth of diamond in the earth,but also for preparing the high-concentration boron or oxygen containing semiconductor diamond technologies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51872112 and 51772120)。
文摘Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804305)the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0391)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ201901405)the Open Project of State Key Laboratory of Superhard Materials,Jilin University,China(Grant No.201912).
文摘To elucidate the regulation mechanism of catalyst geometry structure to diamond growth,we establish three catalyst modes with different structures.The simulation results show that with the decrease of the protruding height of the catalyst,the low-temperature region gradually moves toward the center of the catalyst,which causes the distribution characteristics of the temperature and convection field in the catalyst to change.The temperature difference in vertical direction of the catalyst decreases gradually and increases in the horizontal direction,while the catalyst convection velocity has the same variation regularity in the corresponding directions.The variation of temperature difference and convection velocity lead the crystal growth rate in different crystal orientations to change,which directly affects the crystal morphology of the synthetic diamond.The simulation results are consistent with the experimental results,which shows the correctness of the theoretical rational analysis.This work is expected to be able to facilitate the understanding of catalyst structure regulation mechanism on diamond morphology and the providing of an important theoretical basis for the controllable growth of special crystal shape diamond under HPHT process.
基金Project supported by the National Natural Science Foundation of China(Grant No.51171070)the Project of Jilin Science and Technology Development Plan,China(Grant No.20170101045JC)。
文摘The temperature in the high-pressure high-temperature(HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density Zn O ceramic, Zn_(0.98)Al_(0.02)O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material.High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6×10^(4) S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor(6.42 μW·cm^(-1)·K^(-2)) and dimensionless figure of merit(z T = 0.09) are obtained when Zn_(0.98)Al_(0.02)O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.
基金supported by the National Natural Science Foundation of China(Grant No.51171070)the Project of Jilin Science and Technology Development Plan(Grant No.20170101045JC)+1 种基金the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0391)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201901405)。
文摘Pyrite tailings are the main cause of acid mine wastewater.We propose an idea to more effectively use pyrite,and it is modified by exploiting the reducibility of metal represented by Al under high-pressure and high-temperature(HPHT)conditions.Upon increasing the Al addition,the conductivity of pyrite is effectively improved,which is nearly 734 times higher than that of unmodified pyrite at room temperature.First-principles calculations are used to determine the influence of a high pressure on the pyrite lattice.The high pressure increases the thermal stability of pyrite,reduces pyrite to highconductivity Fe7S8(pyrrhotite)by Al.Through hardness and density tests the influence of Al addition on the hardness and toughness of samples is explored.Finally we discuss the possibility of using other metal-reducing agents to improve the properties of pyrite.
基金Project supported by the National Key Basic Research Program of China (Grant No.2011CB201606)the National Natural Science Foundation of China (Grant No.51007082)
文摘Microcrystalline silicon (μc-Si:H) thin films with and without boron doping are deposited using the radio-frequency plasma-enhanced chemical vapour deposition method. The surface roughness evolutions of the silicon thin films are investigated using ex situ spectroscopic ellipsometry and an atomic force microscope. It is shown that the growth exponentβ and the roughness exponent cχ are about 0.369 and 0.95 for the undoped thin film, respectively. Whereas, for the boron-doped μc-Si:H thin film, t3 increases to 0.534 and cχ decreases to 0.46 due to the shadowing effect.
基金the National Natural Science Foundation of China(Grant Nos.51602200,61874074)Science and Technology Project of Shenzhen(JCYJ20170817101100705)the(Key)Project of Department of Education of Guangdong Province(Grant No.2016KZDXM008).Y.Z.thanks the support from Science and Technology Project of Shenzhen(ZDSYS201707271014468).L.S.thanks the support from Shenzhen Science and Technology Project Program(JCYJ20170817094552356).
文摘MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated.The batteries measured in the 1 M ZnSO4^-1 M MgSO4 electrolyte outplay other competitors,which deliver a high specific capacity of 374 mAh g^-1 at a current density of 100 mA g^-1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g^-1 at 5 A g^-1.This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.
基金This work was supported by the NSFC/RGC Joint Research Scheme 2020/21(Project No:N_CityU104/20)National Natural Science Foundation of China(Grant No.U1804132)+1 种基金Zhongyuan Youth Talent support program of Henan province(Grant No.ZYQR201912152)Zhengzhou University Youth Talent Start-up Grant.
文摘In conventional ethylene carbonate(EC)/propylene carbonate(PC)electrolyte,sodium metal reacts spontaneously and deleteriously with solvent molecules.This significantly limits the practical feasibility of high-voltage sodium metal batteries based on Na metal chemistry.Herein,we present a sodium metal alloy strategy via introducing NaIn and Na_(2)In phases in a Na/In/C composite,aiming at boosting Na ion deposition stability in the common EC/PC electrolyte.Symmetric cells with Na/In/C electrodes achieve an impressive long-term cycling capability at 1 mA cm^(-2)(>870 h)and 5 mA cm^(-2)(>560 h),respectively,with a capacity of 1 mAh cm^(-2).In situ optical microscopy clearly unravels a stable Na ion dynamic deposition process on the Na/In/C composite electrode surface,attributing to a dendrite-free and smooth morphology.Furthermore,theoretical simulations reveal intrinsic mechanism for the reversible Na ion deposition behavior with the composite Na/In/C electrode.Upon pairing with a highvoltage NaVPOF cathode,Na/In/C anode illustrates a better suitability in SMB s.This work promises an alternative alloying strategy for enhancing Na metal interfacial stability in the common EC/PC electrolyte for their future applications.
基金supported by the Science and Technology Program of Sichuan Province(Nos.2017GZ0052,2020YFH0079,and 2020JDJQ0030)National Energy Novel Materials Center Project(No.NENMC-I-1701)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.YJ201722,YJ201955)support by National Natural Science Foundation of China(Grant No.U1804132)。
文摘Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)+1 种基金the Henan Provincial College Young Teachers Program,Chinathe Graduate Innovation of Zhengzhou University,China (Grant No. 11L10102)
文摘A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn 〉 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn 〈 1.0%.
基金supported by the NSFC/RGC Joint Research Scheme 2020/21(Project No:N_City U104/20)。
文摘Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.