The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this pape...The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.展开更多
Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parame...Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.展开更多
An experimental study and theoretical analysis were carried out to explore the ground-borne vibration generated by elevated high-speed railway in rock strata.Taking a typical rail line constructed on rock area in Chin...An experimental study and theoretical analysis were carried out to explore the ground-borne vibration generated by elevated high-speed railway in rock strata.Taking a typical rail line constructed on rock area in China as the research object,a set of field tests was performed on Rizhao-Lankao High-Speed Railway,the bridge and ground vibrations were measured as trains passed at 330−340 km/h,then the transferring law and spatial distribution under individual frequencies were investigated.The experiment results indicate that the bridge frequency spectrum exhibited relatively high-frequency vibration peaks caused by short-wavelength irregularity;ground vibration farther than 30 m away can be amplified with a higher frequency and numerous components.Furthermore,the wave propagation equation of a stratified rock strata was established based on direct-stiffness method to explore the vibration attenuation rules via frequency-domain analysis.It is found that the rock area has a weaker correlation between vibration transmissibility and frequency,thicker and harder rock strata loss their vibration attenuation capacity.It can be concluded that the high-speed railways induced vibration on rock strata shows a wide frequency band and large amplitude,the design of reducing vibration aimed at specific frequency is important according to next more detailed numerical study.展开更多
Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of th...Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obt...The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles.展开更多
Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth...Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.展开更多
Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankme...Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.展开更多
A new approach was proposed to describe settlement behavior of an unsaturated soil with subgrade filling for high-speed railway. Firstly, based on Terzaghi consolidation theory, equations considering the variation coe...A new approach was proposed to describe settlement behavior of an unsaturated soil with subgrade filling for high-speed railway. Firstly, based on Terzaghi consolidation theory, equations considering the variation coefficient of consolidation with void ratio and saturation for consolidation of an unsaturated soil under stage continuous loading were derived, and according to analytical solutions of equations, a formula for settlement computation under stage continuous loading was obtained. Then, combined with the width-to-height ratio of subgrade to compute ground reaction, and by means of in-situ plate loading curves, a correctional approach was presented for the analysis of nonlinear settlement of foundation. Also, the comparison between calculated and measured loadsettlement behavior for an unsaturated soil in Qingdao-Ji'nan high-speed railway was given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to predict the settlement of an unsaturated soil foundation under stage continuous loading in engineering design.展开更多
基金Project(2023YFB2604304)supported by the National Key R&D Program of ChinaProjects(52122810,51978586,51778542,U23A20666,52472458)supported by the National Natural Science Foundation of China+1 种基金Project(K2022G034)supported by the Technology Research and Development Program of China National Railway Group Co.Ltd.Projects(2020JDJQ0033,2023NSFSC0884)supported by Sichuan Province Science and Technology Support Program,China。
文摘The influence of ramps on the transient rolling contact characteristics and damage mechanisms of switch rails remains unclear,presenting substantial challenges to the safety of railway operations.To this end,this paper constructs a transient rolling contact finite element model of the wheel-rail in switch under different ramps using ANSYS/LSDYNA method,and analyzes the tribology and damage characteristics when the wheel passes through the switch at a uniform speed.Our research findings reveal that the vibration induced in the switch rail during the wheel load transfer process leads to a step-like increase in the contact force.Moreover,the interaction between the wheel and the rail primarily involves slip contact,which may significantly contribute to the formation of corrugations on the switch rail.Additionally,the presence of large ramps exacerbates switch rail wear and rolling contact fatigue,resulting in a notable 13.2%increase in switch rail damage under 40‰ramp conditions compared to flat(0‰ramp)conditions.Furthermore,the large ramps can alter the direction of crack propagation,ultimately causing surface spalling of the rail.Therefore,large ramps intensify the dynamic interactions during the wheel load transfer process,further aggravating the crack and spalling damage to the switch rails.
基金Projects(51425804,51378439,51608459)supported by the National Natural Science Foundation of ChinaProjects(U1334203,U1234201)supported by the Key Project of the China’s High-Speed Railway United Fund+1 种基金Project(2016M590898)supported by China Postdoctoral Science FoundationProject(2014GZ0009)supported by Sichuan Provinial Science and Technology support Program,China
文摘Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.
基金Project(2016YFE0205200)supported by the National Key Research and Development Program of ChinaProjects(U1734207,51978585)supported by the National Natural Science Foundation of China。
文摘An experimental study and theoretical analysis were carried out to explore the ground-borne vibration generated by elevated high-speed railway in rock strata.Taking a typical rail line constructed on rock area in China as the research object,a set of field tests was performed on Rizhao-Lankao High-Speed Railway,the bridge and ground vibrations were measured as trains passed at 330−340 km/h,then the transferring law and spatial distribution under individual frequencies were investigated.The experiment results indicate that the bridge frequency spectrum exhibited relatively high-frequency vibration peaks caused by short-wavelength irregularity;ground vibration farther than 30 m away can be amplified with a higher frequency and numerous components.Furthermore,the wave propagation equation of a stratified rock strata was established based on direct-stiffness method to explore the vibration attenuation rules via frequency-domain analysis.It is found that the rock area has a weaker correlation between vibration transmissibility and frequency,thicker and harder rock strata loss their vibration attenuation capacity.It can be concluded that the high-speed railways induced vibration on rock strata shows a wide frequency band and large amplitude,the design of reducing vibration aimed at specific frequency is important according to next more detailed numerical study.
基金Projects(U1734207,51978585)supported by the National Natural Science Foundation of ChinaProject(2016 YFE 0205200)supported by the National Key Research and Development Program of China。
文摘Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金Project(52425213)supported by the National Science Fund for Distinguished Young Scholars of ChinaProjects(52278461,52308467)supported by the National Natural Science Foundation of China+1 种基金Projects(2021YFF0502100,2021YFB2600900)supported by the National Key R&D Program of ChinaProject(2022JDTD0015)supported by the Sichuan Province Youth Science and Technology Innovation Team,China。
文摘The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles.
基金Project(2022YFB2603400) supported by the National Key R&D Program of ChinaProjects(52208449, 52108420) supported by the National Natural Science Foundation of ChinaProject(2022NSFSC1908) supported by the Natural Science Foundation of Sichuan Province,China。
基金Project(2016YFE0205200)supported by the National Key Research and Development Program of ChinaProjects(51425804,51508479)supported by the National Natural Science Foundation of China+1 种基金Project(2016310019)supported by the Doctorial Innovation Fund of Southwest Jiaotong University,ChinaProject(2017GZ0373)supported by the Research Fund for Key Research and Development Projects in Sichuan Province,China
文摘Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.
基金Projects(51978585,U1734207)supported by the National Natural Science Foundation of ChinaProject(2022YFB2603400)supported by the National Key Research and Development Program of China。
基金Project(2010G003-F)supported by Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.
基金Project(2010G003-F)supported by the Research and Development Program for Technology of the Chinese Ministry of Railway
文摘A new approach was proposed to describe settlement behavior of an unsaturated soil with subgrade filling for high-speed railway. Firstly, based on Terzaghi consolidation theory, equations considering the variation coefficient of consolidation with void ratio and saturation for consolidation of an unsaturated soil under stage continuous loading were derived, and according to analytical solutions of equations, a formula for settlement computation under stage continuous loading was obtained. Then, combined with the width-to-height ratio of subgrade to compute ground reaction, and by means of in-situ plate loading curves, a correctional approach was presented for the analysis of nonlinear settlement of foundation. Also, the comparison between calculated and measured loadsettlement behavior for an unsaturated soil in Qingdao-Ji'nan high-speed railway was given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to predict the settlement of an unsaturated soil foundation under stage continuous loading in engineering design.
基金Project(09020718120007)supported by the Research Funds for the Key Laboratory of New Technology for Construction of Cities in Mountain Area,ChinaProject(52078086)supported by the National Natural Science Foundation of China+2 种基金Project(cstc2020jcyj-cxttX0003)supported by Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(41977259)supported by the National Natural Science Foundation of ChinaProject(2023J06039)supported by Fujian Science Foundation for Distinguished Young Scholars,China。