期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces
1
作者 LIU Li YAO Peng +3 位作者 CHU Dong-kai XU Xiang-yue QU Shuo-shuo HUANG Chuan-zhen 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1476-1488,共13页
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte... Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces. 展开更多
关键词 laser-assisted water jet 316L stainless steel micro-trap structures "well"structure surface morphology secondary electron emission(SEE) groove depth groove width
在线阅读 下载PDF
Analysis of axial force of double circular arc helical gear hydraulic pump and design of its balancing device 被引量:2
2
作者 WU Yi-fei GE Pei-qi BI Wen-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期418-428,共11页
In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axia... In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump. 展开更多
关键词 double arc helical gear gear hydraulic pump axial force hydrostatic bearing
在线阅读 下载PDF
Bioinspired superwetting surfaces for fog harvesting fabricated by picosecond laser direct ablation 被引量:3
3
作者 LI Wei-zhen CHU Dong-kai +3 位作者 QU Shuo-shuo YIN Kai HU Shuang-shuang YAO Peng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3368-3375,共8页
Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydropho... Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications. 展开更多
关键词 fog harvesting SUPERHYDROPHOBIC SUPERHYDROPHILIC picosecond laser stenocara beetle
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部