期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fault diagnosis method of link control system for gravitational wave detection 被引量:1
1
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
在线阅读 下载PDF
Entire aerial-aquatic trajectory modeling and optimization for trans- medium vehicles
2
作者 Teng Long Nianhui Ye +2 位作者 Baoshou Zhang Jingliang Sun Renhe Shi 《Defence Technology(防务技术)》 2025年第7期223-241,共19页
Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determ... Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework. 展开更多
关键词 Water entry Trans-medium vehicle Computational fluid dynamics Trajectory optimization Pseudospectral method Surrogate
在线阅读 下载PDF
Hierarchical cooperative path planning method using three-dimensional velocity-obstacle strategy for multiple fixed-wing UAVs
3
作者 ZHOU Zhenlin LONG Teng +1 位作者 SUN Jingliang LI Junzhi 《Journal of Systems Engineering and Electronics》 2025年第5期1342-1352,共11页
A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path... A three-dimensional path-planning approach has been developed to coordinate multiple fixed-wing unmanned aerial vehicles(UAVs)while avoiding collisions.The hierarchical path-planning architecture that divides the path-planning process into two layers is proposed by designing the velocityobstacle strategy for satisfying timeliness and effectiveness.The upper-level layer focuses on creating an efficient Dubins initial path considering the dynamic constraints of the fixed wing.Subsequently,the lower-level layer detects potential collisions and adjusts its flight paths to avoid collisions by using the threedimensional velocity obstacle method,which describes the maneuvering space of collision avoidance as the intersection space of half space.To further handle the dynamic and collisionavoidance constraints,a priority mechanism is designed to ensure that the adjusted path is still feasible for fixed-wing UAVs.Simulation experiments demonstrate the effectiveness of the proposed method. 展开更多
关键词 three-dimensional path planning Dubins path method velocity obstacle collision avoidance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部