In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Different from the classical configuration CuO/CeO2 catalyst,the inverse configuration CeO2 /CuO catalyst (atomic ratio of Ce/Cu=10/100) was prepared by impregnation method.Five calcination temperatures were selecte...Different from the classical configuration CuO/CeO2 catalyst,the inverse configuration CeO2 /CuO catalyst (atomic ratio of Ce/Cu=10/100) was prepared by impregnation method.Five calcination temperatures were selected to investigate the interaction between CeO2 and CuO support.It is found that as calcination temperature increased from 500 to 900 C,sintering of CeO2 particles on the support occurred together with the diffusion of a portion of Ce 4+ ions into CuO crystals,forming solid solution.Formation of interface complex Ce-O-Cu was suggested by TPR measurements.The catalyst calcined at 700 C gives the highest activity for preferential oxidation of CO in excess H2 stream.展开更多
Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweigh...Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweight energy storage devices.Micro-supercapacitors(MSCs)possessing long lifetime,high power density,environment friendliness and safety,have attracted great attention recently.Since the performance of the MSCs is mainly related to the structure of the active electrode,there is a great need to explore the efficient fabricating strategies to deterministically coordinate the structure and functionality of microdevices.Considering that laser technology possesses many superior features of facility,high-precision,low-cost,high-efficiency,shape-adaptability and maneuverability,herein we summarize the development of laser technologies in MSCs manufacturing,along with their strengths and weaknesses.The current achievements and challenges are also highlighted and discussed,aiming to provide a valuable reference for the rational design and manufacture of MSCs in the future.展开更多
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly re...Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.展开更多
Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing...Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.展开更多
Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activi...Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism.Herein,Cu species(single-atom,clusters,and nanoparticles)with tunable loading supported on N-doped TiO_(2)/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential,as evidenced by the advanced operando X-ray absorption spectroscopy,and there exists an incompletely reversible transformation of the restructured structure to the initial state.Notably,restructured CuN_(4)&Cu_(4) deliver the high NH_(3) yield of 88.2 mmol h^(−1)g_(cata)^(−1) and FE(~94.3%)at−0.75 V,resulting from the optimal adsorption of NO_(3)^(−) as well as the rapid conversion of^(*)NH_(2)OH to^(*)NH_(2) intermediates originated from the modulation of charge distribution and d-band center for Cu site.This work not only uncovers CuN_(4)&Cu_(4) have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.展开更多
Selectivity of hydrogen in reaction of oxidative coupling of methane (OCM) was evaluated over the MxOy-BaCO3 (MzOy: La2O3, Sm2O3, MgO, CaO) catalysts. Correlation of product selectivities was thus discussed. From...Selectivity of hydrogen in reaction of oxidative coupling of methane (OCM) was evaluated over the MxOy-BaCO3 (MzOy: La2O3, Sm2O3, MgO, CaO) catalysts. Correlation of product selectivities was thus discussed. From the correlation of product selectivities, it is revealed that the carbon oxides (CO and CO2) were most probably formed from the direct oxidation of methyl radicals under the conditions adopted in the present work. This is also in accordance with the OCM mechanism proposed in literature.展开更多
Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourie...Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.展开更多
Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.Th...Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved.展开更多
The solvent-induced morphological change of silver nanoparticles is studied with a combination of optical spectroscopy and atomic force microscopy(AFM).By using the local surface plasmon resonance(LSPR)spectroscopy ar...The solvent-induced morphological change of silver nanoparticles is studied with a combination of optical spectroscopy and atomic force microscopy(AFM).By using the local surface plasmon resonance(LSPR)spectroscopy arising from Ag nanoparticles,an in-situ investigation of the spectral changes is carried out before,during and after exposure of Ag island films to water.Combining with the morphological observations by AFM,we sort out the morphological and dielectric contributions to the water-induced LSPR changes.Our results demonstrate that a slight morphological change induced by water contact can result in an apparent blue shift of the LSPR spectral maximum.Furthermore,it is found that this structural change leads to a higher sensitivity of the Ag island films in response to the change in the external dielectric environment.This solvent-induced morphological change,and consequently the modification of the LSPR of the metal nanoparticles,may have significant impact in the applications of solvent-involved plasmon sensors,such as chemical/biological sensing and single-molecule spectroscopy.展开更多
A novel surface plasmon resonance (SPR) sensor based on molecularly imprinted films (MIFs) was developed for the detection of pentaerythritol tetranitrate (PETN). In this work, the thin MIFs were formed on a gol...A novel surface plasmon resonance (SPR) sensor based on molecularly imprinted films (MIFs) was developed for the detection of pentaerythritol tetranitrate (PETN). In this work, the thin MIFs were formed on a gold sensor chip through thermal co-polymerization of functional mono- mers (methacrylic acid, MAA) and crosslinking monomers (ethylene glycol dimethacrylate, EGD- MA) in the presence of template molecules PETN. The template molecules PETN were subsequently removed from the MIFs simply by rinsing the MIFs with a mixture of acetonitrile and acetic acid 9:1 ( v/v), thus the recognition sites were formed for specific detection of PETN. According to the mass coverage equation, the surface coverage of removed PETN from MIFs was about 10. 8 ng/mm~. The developed SPR sensor allowed for the detection of PETN at concentration down to 10-~~ mol/L. A control experiment utilizing an analogue cyclotrimethylenetrinitramine (RDX) showed MIFs' good selectivity to PETN.展开更多
The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing.We report that the denser granular packing comprising two different diameters of granules augments t...The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing.We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead.This anomalous behavior occurs when small granules are stacked on the large ones.In the case of anomalous increase,a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column.Finally,the results are qualitatively explained by using the Janssen model.展开更多
The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herei...The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.展开更多
Static packing structures of two-dimensional granular chains are investigated experimentally. It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases....Static packing structures of two-dimensional granular chains are investigated experimentally. It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases. The packing structures are globally disordered, while the local square crystallization is found by using the radial distribution function. This characteristic phase of chain packing is similar to a Hquid crystal state, and has properties between a conventional liquid and solid crystal.展开更多
The hydrogen-bonded organic frameworks(HOFs)as a new type of porous framework materials have been widely studied in various areas.However,the lack of appropriate active sites,low intrinsic conductivity,and poor stabil...The hydrogen-bonded organic frameworks(HOFs)as a new type of porous framework materials have been widely studied in various areas.However,the lack of appropriate active sites,low intrinsic conductivity,and poor stability limited their performance in the field of electrocatalysis.Herein,we designed two 2D metal hydrogen-bonded organic frameworks(2D–M–HOF,M=Cu^(2+)or Ni^(2+))with coordination compounds based on 2,3,6,7,14,15-hexahydroxyl cyclotricatechylene and transition metal ions(Cu^(2+)and Ni^(2+)),respectively.The crystal structure of 2D–Cu–HOF is determined by continuous rotation electron diffraction,indicating an undulated 2D hydrogen-bond network with interlayeredπ-πstacking.The flexible structure of 2D–M–HOF leads to the formation of self-adaption interlayered sites,resulting in superior activity and selectivity in the electrocatalytic conversion of CO_(2) to C_(2) products,achieving a total Faradaic efficiency exceeding 80%due to the high-efficiency C–C coupling.The experimental results and density functional calculations verify that the undulated 2D–M–HOF enables the energetically favorable formation of*OCCHO intermediate.This work provides a promising strategy for designing HOF catalysts in electrocatalysis and related processes.展开更多
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ...Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn0_(.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.展开更多
Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restr...Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.展开更多
Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can b...Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.展开更多
Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We synthesized a novel PLC smart film by doping multi-wall ca...Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes(MWCNTs)into a reverse-mode polymer network liquid crystal(R-PNLC).展开更多
Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high per...Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications.展开更多
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
文摘Different from the classical configuration CuO/CeO2 catalyst,the inverse configuration CeO2 /CuO catalyst (atomic ratio of Ce/Cu=10/100) was prepared by impregnation method.Five calcination temperatures were selected to investigate the interaction between CeO2 and CuO support.It is found that as calcination temperature increased from 500 to 900 C,sintering of CeO2 particles on the support occurred together with the diffusion of a portion of Ce 4+ ions into CuO crystals,forming solid solution.Formation of interface complex Ce-O-Cu was suggested by TPR measurements.The catalyst calcined at 700 C gives the highest activity for preferential oxidation of CO in excess H2 stream.
基金supported by the National Key R&D Program of China(2017YFB1104300)NSFC(22075019,21604003)+1 种基金the Beijing Natural Science Foundation(2152028,2164070)the Beijing Municipal Science and Technology Commission(Z161100002116022)。
文摘Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweight energy storage devices.Micro-supercapacitors(MSCs)possessing long lifetime,high power density,environment friendliness and safety,have attracted great attention recently.Since the performance of the MSCs is mainly related to the structure of the active electrode,there is a great need to explore the efficient fabricating strategies to deterministically coordinate the structure and functionality of microdevices.Considering that laser technology possesses many superior features of facility,high-precision,low-cost,high-efficiency,shape-adaptability and maneuverability,herein we summarize the development of laser technologies in MSCs manufacturing,along with their strengths and weaknesses.The current achievements and challenges are also highlighted and discussed,aiming to provide a valuable reference for the rational design and manufacture of MSCs in the future.
基金the NSFC(22075019)National Key R&D Program of China(2017YFB1104300)。
文摘Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.
基金the financial support from the National Natural Science Foundation of China(No.20973022 and No.11472048)the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)(Serial No.33600000-14-ZC0607-0006)
文摘Zeolite FAU composites with a macro/meso-microporous hierarchical structure were hydrothermally synthesized using macro-mesoporous γ-Al_2O_3 monolith as the substrate by means of the liquid crystallization directing agent(LCDA) induced method. No template was needed throughout the synthesis processes. The structure and porosity of zeolite composites were analyzed by means of X-ray powder diffraction(XRD), scanning electron microscopy(SEM) and N_2adsorption-desorption isotherms. The results showed that the supported zeolite composites with varied zeolitic crystalline phases and different morphologies can be obtained by adjusting the crystallization parameters, such as the crystallization temperature, the composition and the alkalinity of the precursor solution. The presence of LCDA was defined as a determinant for synthesizing the zeolite composites. The mechanisms for formation of the hierarchically porous FAU zeolite composites in the LCDA induced synthesis process were discussed. The resulting monolithic zeolite with a trimodal-porous hierarchical structure shows potential applicability where facile diffusion is required.
基金supported by the National Natural Science Foundation of China(Grant numbers 92061106 and 21971016).
文摘Direct electrochemical nitrate reduction reaction(NITRR)is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia.However,the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism.Herein,Cu species(single-atom,clusters,and nanoparticles)with tunable loading supported on N-doped TiO_(2)/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential,as evidenced by the advanced operando X-ray absorption spectroscopy,and there exists an incompletely reversible transformation of the restructured structure to the initial state.Notably,restructured CuN_(4)&Cu_(4) deliver the high NH_(3) yield of 88.2 mmol h^(−1)g_(cata)^(−1) and FE(~94.3%)at−0.75 V,resulting from the optimal adsorption of NO_(3)^(−) as well as the rapid conversion of^(*)NH_(2)OH to^(*)NH_(2) intermediates originated from the modulation of charge distribution and d-band center for Cu site.This work not only uncovers CuN_(4)&Cu_(4) have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.
文摘Selectivity of hydrogen in reaction of oxidative coupling of methane (OCM) was evaluated over the MxOy-BaCO3 (MzOy: La2O3, Sm2O3, MgO, CaO) catalysts. Correlation of product selectivities was thus discussed. From the correlation of product selectivities, it is revealed that the carbon oxides (CO and CO2) were most probably formed from the direct oxidation of methyl radicals under the conditions adopted in the present work. This is also in accordance with the OCM mechanism proposed in literature.
基金This work was supported by the National Natural Science Foundation of China(No.61673004 and No.11472048)the Fundamental Research Funds for the Central Universities of China(XK1802-4).
文摘Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.
基金The work is financially supported by the National Natural Science Foundation of China(No.:b030301,a020601)the Foundation project for basic discipline research of Inner Mongolia Agricultural University(jc2017005)the research start project for high level talent of Inner Mongolia Agricultural University(ndgcc2016-17).
文摘Two microcapsules with different paraffin phase changes were prepared using styrene-divinylbenzene copolymer and melamine resin as the capsule wall and paraffin(with a melting point of 50°C)as the capsule core.The microcapsules were directly added to the hydroxyl terminated polybutadiene(HTPB)-polyurethane elastomer system to fabricate the polyurethane elastomer composites.The thermodynamic stability and mechanical properties of the material were then studied.The results show that the thermal stability of the polyurethane elastomer does not decrease after adding paraffin phase change microcapsules,and the thermal stability of the polyurethane elastomer with melamine resin as the wall increases.Tensile strength increased from 367 kPa to 797 kPa,and compression strength increased from 245.9 N to 344.7 N.In addition,capsule walls comprised different monomers/paraffin microcapsules of the copolymer of styrene and divinylbenzene.The optimal mechanical property was obtained at a monomer/paraffin ratio of 1:1.The compression strength increased and the tensile strength decreased.The tensile strength of the microcapsule with melamine resin capsule wall and the compression strength of the microcapsule with polystyrene capsule wall were considerably improved.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874015 and 10975014.
文摘The solvent-induced morphological change of silver nanoparticles is studied with a combination of optical spectroscopy and atomic force microscopy(AFM).By using the local surface plasmon resonance(LSPR)spectroscopy arising from Ag nanoparticles,an in-situ investigation of the spectral changes is carried out before,during and after exposure of Ag island films to water.Combining with the morphological observations by AFM,we sort out the morphological and dielectric contributions to the water-induced LSPR changes.Our results demonstrate that a slight morphological change induced by water contact can result in an apparent blue shift of the LSPR spectral maximum.Furthermore,it is found that this structural change leads to a higher sensitivity of the Ag island films in response to the change in the external dielectric environment.This solvent-induced morphological change,and consequently the modification of the LSPR of the metal nanoparticles,may have significant impact in the applications of solvent-involved plasmon sensors,such as chemical/biological sensing and single-molecule spectroscopy.
基金Supported by the National Natural Science Foundation of Chi- na (20771015) the lll Project of Higher Education of China (B07012)
文摘A novel surface plasmon resonance (SPR) sensor based on molecularly imprinted films (MIFs) was developed for the detection of pentaerythritol tetranitrate (PETN). In this work, the thin MIFs were formed on a gold sensor chip through thermal co-polymerization of functional mono- mers (methacrylic acid, MAA) and crosslinking monomers (ethylene glycol dimethacrylate, EGD- MA) in the presence of template molecules PETN. The template molecules PETN were subsequently removed from the MIFs simply by rinsing the MIFs with a mixture of acetonitrile and acetic acid 9:1 ( v/v), thus the recognition sites were formed for specific detection of PETN. According to the mass coverage equation, the surface coverage of removed PETN from MIFs was about 10. 8 ng/mm~. The developed SPR sensor allowed for the detection of PETN at concentration down to 10-~~ mol/L. A control experiment utilizing an analogue cyclotrimethylenetrinitramine (RDX) showed MIFs' good selectivity to PETN.
基金by the National Natural Science Foundation of China under Grant Nos 10975014 and 10875166.
文摘The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing.We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead.This anomalous behavior occurs when small granules are stacked on the large ones.In the case of anomalous increase,a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column.Finally,the results are qualitatively explained by using the Janssen model.
基金supported by the National Natural Science Foundation of China(Nos.21203008,21975025,12274025)the Hainan Province Science and Technology Special Fund(Nos.ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(No.300333)。
文摘The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.
基金Supported by the National Natural Science Foundation of China under Grant No 10975014.
文摘Static packing structures of two-dimensional granular chains are investigated experimentally. It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases. The packing structures are globally disordered, while the local square crystallization is found by using the radial distribution function. This characteristic phase of chain packing is similar to a Hquid crystal state, and has properties between a conventional liquid and solid crystal.
基金financially supported by the National Natural Science Foundation of China(nos.21971012,61933002,21601015,21625102,21674012,and 81601549)the National Key Research and Development Program of China(2020YFB1506300)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘The hydrogen-bonded organic frameworks(HOFs)as a new type of porous framework materials have been widely studied in various areas.However,the lack of appropriate active sites,low intrinsic conductivity,and poor stability limited their performance in the field of electrocatalysis.Herein,we designed two 2D metal hydrogen-bonded organic frameworks(2D–M–HOF,M=Cu^(2+)or Ni^(2+))with coordination compounds based on 2,3,6,7,14,15-hexahydroxyl cyclotricatechylene and transition metal ions(Cu^(2+)and Ni^(2+)),respectively.The crystal structure of 2D–Cu–HOF is determined by continuous rotation electron diffraction,indicating an undulated 2D hydrogen-bond network with interlayeredπ-πstacking.The flexible structure of 2D–M–HOF leads to the formation of self-adaption interlayered sites,resulting in superior activity and selectivity in the electrocatalytic conversion of CO_(2) to C_(2) products,achieving a total Faradaic efficiency exceeding 80%due to the high-efficiency C–C coupling.The experimental results and density functional calculations verify that the undulated 2D–M–HOF enables the energetically favorable formation of*OCCHO intermediate.This work provides a promising strategy for designing HOF catalysts in electrocatalysis and related processes.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(300333)the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。
文摘Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn0_(.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.
基金This work was supported partly by the China Postdoctoral Science Foundation(2023M730201)the Fundamental Research Funds for the Central Universities(2023XKRC027)+1 种基金the Fundamental Research Funds for the 173 project under Grant 2020-JCJQ-ZD-043the project under Grant 22TQ0403ZT07001 and Wei Zhen Limited Liability Company.
文摘Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
基金the Natural Science Foundation of Beijing Municipality(2222075)National Natural Science Foundation of China(22279010,21671020,51673026)Analysis&Testing Center,Beijing Institute of Technology.
文摘Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
基金Supported by the China National Key R&D Program during the 14th Five-Year Plan Period(Grant No.2023YFB3811600)the Major Program of Harbin Institute of Technology(Grant No.2023FRFK01002)。
文摘Polymer-liquid crystals(PLCs)are common materials for smart windows.However,PLC smart windows usually require high driving voltage to maintain transparency.We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes(MWCNTs)into a reverse-mode polymer network liquid crystal(R-PNLC).
基金This work was supported by the NSFC(22075019,22035005)the Young Talent Program of Henan Agricultural University(30500601).
文摘Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications.