期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimization of High-Speed WIG Airfoil with Consideration of Non-ground Effect by a Two-Step Deep Learning Inverse Design Method
1
作者 WANG Chenlu SUN Jianhong +4 位作者 ZHENG Daren SUN Zhi ZUO Si LIU Hao LI Pei 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期56-69,共14页
Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of hi... Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c] 展开更多
关键词 conditional generative adversarial network(CGAN) artificial neural network(ANN) airfoil design wing-in-ground(WIG)aircraft ground effect
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部