The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
The silver nanowires(Ag NWs)electrodes,which consist of incompact Ag nanoparticles(NPs)formed by multi-photon photoreduction,usually have poor conductivities.An effective strategy for enhancing conductivity of the Ag ...The silver nanowires(Ag NWs)electrodes,which consist of incompact Ag nanoparticles(NPs)formed by multi-photon photoreduction,usually have poor conductivities.An effective strategy for enhancing conductivity of the Ag NWs elec-trodes is plasmon-enhanced nanosoldering(PLNS)by laser irradiation.Here,plasmon-enhanced photothermal effect is used to locally solder Ag NPs and then aggregates of these NPs grow into large irregular particles in PLNS process.Fi-nite element method(FEM)simulations indicate that the soldering process is triggered by localized surface plasmon-in-duced electric field enhancement at“hot-spots”.The effectiveness of PLNS for enhancing conductivity depends on laser power density and irradiation time.By optimizing the conditions of PLNS,the electrical conductivity of Ag NWs is signific-antly enhanced and the conductivityσs is increased to 2.45×107 S/m,which is about 39%of the bulk Ag.This PLNS of Ag NWs provides an efficient and cost-effective technique to rapidly produce large-area metal nanowire electrodes and capacitors with high conductivity,excellent uniformity,and good flexibility.展开更多
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
文摘The silver nanowires(Ag NWs)electrodes,which consist of incompact Ag nanoparticles(NPs)formed by multi-photon photoreduction,usually have poor conductivities.An effective strategy for enhancing conductivity of the Ag NWs elec-trodes is plasmon-enhanced nanosoldering(PLNS)by laser irradiation.Here,plasmon-enhanced photothermal effect is used to locally solder Ag NPs and then aggregates of these NPs grow into large irregular particles in PLNS process.Fi-nite element method(FEM)simulations indicate that the soldering process is triggered by localized surface plasmon-in-duced electric field enhancement at“hot-spots”.The effectiveness of PLNS for enhancing conductivity depends on laser power density and irradiation time.By optimizing the conditions of PLNS,the electrical conductivity of Ag NWs is signific-antly enhanced and the conductivityσs is increased to 2.45×107 S/m,which is about 39%of the bulk Ag.This PLNS of Ag NWs provides an efficient and cost-effective technique to rapidly produce large-area metal nanowire electrodes and capacitors with high conductivity,excellent uniformity,and good flexibility.