The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec...The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.展开更多
In the last few decades,nitroimidazoles have been investigated mostly due to their properties as antibiotics,radiosensitizers and anti-protozoans[1 -3].Recently these nitroimidazoles,such as 2,4-dinitroimidazole,1-met...In the last few decades,nitroimidazoles have been investigated mostly due to their properties as antibiotics,radiosensitizers and anti-protozoans[1 -3].Recently these nitroimidazoles,such as 2,4-dinitroimidazole,1-methyl-2,4,5-trinitroimidazole and their energetic salts, have attracted renewed attention for their favorable explosive performance as well as improved safety characteristics[4,5].Because of the activity of cyano group,2-nitro-4,5-dicyano-1 H-imidazole (NDCI) could be used as an intermediate in the synthesis of novel energetic materials containing nitroimidazole moiety.NDCI has been synthesized by the procedure given by Yixin Lu and coworkers[6],where the diazotization reaction and the Sandmeyer reaction were separately achieved.NDCI was obtained by adding a solution of sodium nitrite to 2-diazo4,5-dicyanoimidazole which was generated by diazotization of 2-amino-4,5-dicyano-1H-imidazole ( ADCI ) with sodium nitrite in water-hydrochloric acid and collected by filtration.Dry 2-diazo-4,5-dicyanoimidazole was so sensitive to shock that its separation may cause explosion[7].展开更多
In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 m...In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 mg·L^(-1),the cobalt coating transformed from disordered large grains to a honeycomb structure,with a preferred orientation of(002)facet on hexago-nal close-packed(HCP)cobalt crystals.The resistivity of the cobalt film decreased to 14.4μΩ·cm,and further decreased to 10.7μΩ·cm after the annealing treatment.When the concentration of saccharin was increased,the grain size was gradually refined and a“stone forest”structure was observed,with the preferred orientation remaining unchanged.The addition of saccharin also slightly improves the purity of cobalt coating to a certain extent.Through the study of the crystallization behavior of cobalt electroless plating,saccharin molecules can adsorb to specific c-sites on the cobalt dense crystal plane,inhibiting the growth of abc stacking arrangement and inducing the crystal growth in ab stacking mode,thereby achieving optimal growth of HCP(002)texture.展开更多
基金supported by the National Natural Science Foundation of China(22209040,22202063).
文摘The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.
文摘In the last few decades,nitroimidazoles have been investigated mostly due to their properties as antibiotics,radiosensitizers and anti-protozoans[1 -3].Recently these nitroimidazoles,such as 2,4-dinitroimidazole,1-methyl-2,4,5-trinitroimidazole and their energetic salts, have attracted renewed attention for their favorable explosive performance as well as improved safety characteristics[4,5].Because of the activity of cyano group,2-nitro-4,5-dicyano-1 H-imidazole (NDCI) could be used as an intermediate in the synthesis of novel energetic materials containing nitroimidazole moiety.NDCI has been synthesized by the procedure given by Yixin Lu and coworkers[6],where the diazotization reaction and the Sandmeyer reaction were separately achieved.NDCI was obtained by adding a solution of sodium nitrite to 2-diazo4,5-dicyanoimidazole which was generated by diazotization of 2-amino-4,5-dicyano-1H-imidazole ( ADCI ) with sodium nitrite in water-hydrochloric acid and collected by filtration.Dry 2-diazo-4,5-dicyanoimidazole was so sensitive to shock that its separation may cause explosion[7].
基金supported by National Natural Science Foundation of China(22402115,22472094)Shaanxi Special Fund for Talent Introduction(100090/1204071055).
文摘In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 mg·L^(-1),the cobalt coating transformed from disordered large grains to a honeycomb structure,with a preferred orientation of(002)facet on hexago-nal close-packed(HCP)cobalt crystals.The resistivity of the cobalt film decreased to 14.4μΩ·cm,and further decreased to 10.7μΩ·cm after the annealing treatment.When the concentration of saccharin was increased,the grain size was gradually refined and a“stone forest”structure was observed,with the preferred orientation remaining unchanged.The addition of saccharin also slightly improves the purity of cobalt coating to a certain extent.Through the study of the crystallization behavior of cobalt electroless plating,saccharin molecules can adsorb to specific c-sites on the cobalt dense crystal plane,inhibiting the growth of abc stacking arrangement and inducing the crystal growth in ab stacking mode,thereby achieving optimal growth of HCP(002)texture.