[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha...[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks.展开更多
Soybean leaf morphology is one of the most important morphological and biological characteristics of soybean.The germplasm gene differences of soybeans can lead to different phenotypic traits,among which soybean leaf ...Soybean leaf morphology is one of the most important morphological and biological characteristics of soybean.The germplasm gene differences of soybeans can lead to different phenotypic traits,among which soybean leaf morphology is an important parameter that directly reflects the difference in soybean germplasm.To realize the morphological classification of soybean leaves,a method was proposed based on deep learning to automatically detect soybean leaves and classify leaf morphology.The morphology of soybean leaves included lanceolate,oval,ellipse and round.First,an image collection platform was designed to collect images of soybean leaves.Then,the feature pyramid networks–single shot multibox detector(FPN-SSD)model was proposed to detect the top leaflets of soybean leaves on the collected images.Finally,a classification model based on knowledge distillation was proposed to classify different morphologies of soybean leaves.The obtained results indicated an overall classification accuracy of 0.956 over a private dataset of 3200 soybean leaf images,and the accuracy of classification for each morphology was 1.00,0.97,0.93 and 0.94.The results showed that this method could effectively classify soybean leaf morphology and had great application potential in analyzing other phenotypic traits of soybean.展开更多
文摘[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks.
基金Supported by Heilongjiang Province Philosophy and Social Science Research Planning Project(17TQB059)。
文摘Soybean leaf morphology is one of the most important morphological and biological characteristics of soybean.The germplasm gene differences of soybeans can lead to different phenotypic traits,among which soybean leaf morphology is an important parameter that directly reflects the difference in soybean germplasm.To realize the morphological classification of soybean leaves,a method was proposed based on deep learning to automatically detect soybean leaves and classify leaf morphology.The morphology of soybean leaves included lanceolate,oval,ellipse and round.First,an image collection platform was designed to collect images of soybean leaves.Then,the feature pyramid networks–single shot multibox detector(FPN-SSD)model was proposed to detect the top leaflets of soybean leaves on the collected images.Finally,a classification model based on knowledge distillation was proposed to classify different morphologies of soybean leaves.The obtained results indicated an overall classification accuracy of 0.956 over a private dataset of 3200 soybean leaf images,and the accuracy of classification for each morphology was 1.00,0.97,0.93 and 0.94.The results showed that this method could effectively classify soybean leaf morphology and had great application potential in analyzing other phenotypic traits of soybean.