Large residual stresses would be generated in the laser additive manufactured(LAMed)structures after processing rapid and intense heating and cooling cycles with bad mechanical properties.Scholars have tried many meth...Large residual stresses would be generated in the laser additive manufactured(LAMed)structures after processing rapid and intense heating and cooling cycles with bad mechanical properties.Scholars have tried many methods to decrease the residual stress to prevent the structures from being broken and improve the mechanical properties.In this study,residual stress and mechanical properties of LAMed structures are analyzed,and the advanced measuring method,laser ultrasonic technique,is used to detect the residual stresses accumulated in the samples in time.The results show that when the solution temperature is less than T_(β)(992℃),the residual stress increases gradually with the increase of solution temperature,and when the temperature is more than T_(β)(992℃),Widmanstätten structure will significantly reduce the residual stress;the mechanical properties of the specimen decrease with the increase of the solution temperature,and the different cooling methods do not have much effect on the elastic properties of the specimen.Considering the residual stress and mechanical properties,the HT1 system used in this paper is the best.This study is of great significance for the reasonable suppression of residual stress and the regulation of mechanical properties of TC4 titanium alloy fabricated by laser additive manufacturing.展开更多
Ruthenium, one of the platinum group metals, has drawn much attention due to its catalytic behavior, hardness, electrical conductivity and density. Ruthenium particles are usually prepared on a small scale by the poly...Ruthenium, one of the platinum group metals, has drawn much attention due to its catalytic behavior, hardness, electrical conductivity and density. Ruthenium particles are usually prepared on a small scale by the polyol process, however, the size of the obtained ruthenium nanoparticles is most below 10 nm. In this work, ruthenium particles about 200 nm in diameter were obtained in aqueous solution by using ammonium formate as the reducing agent. To have a better control of particle's size and shape, the effects of PVP, mixing mode, reaction temperature, solution pH and calcination temperature were investigated.展开更多
Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the...Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness.展开更多
The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as-extruded Mg-10Gd-3Y-0.6Zr (mass fraction. %) alloy were investigated. The results show that after T6 treatment, the diam...The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as-extruded Mg-10Gd-3Y-0.6Zr (mass fraction. %) alloy were investigated. The results show that after T6 treatment, the diameter of grain increases to 20 μm. As the second phases dissolve into the matrix, the smaller and denser β′ phases precipitate inside the grains. After T6-treatment, both yield strength (TYS) and ultimate tensile strength (UTS) are increased. Comparing with that in only ageing condition (T5), the UTS and TYS increased from 365 MPa,285 MPa to 400 MPa,310 MPa, respectively, but the elongation decreased from 7.0% to 3.5%. It has been found that the effects of precipitates on the strength are stronger than that of the growth of grain size.展开更多
基金Project(51771051)supported by the National Natural Science Foundation of ChinaProject(2021-MS-102)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Project(N2105021)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(230032)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates,China。
文摘Large residual stresses would be generated in the laser additive manufactured(LAMed)structures after processing rapid and intense heating and cooling cycles with bad mechanical properties.Scholars have tried many methods to decrease the residual stress to prevent the structures from being broken and improve the mechanical properties.In this study,residual stress and mechanical properties of LAMed structures are analyzed,and the advanced measuring method,laser ultrasonic technique,is used to detect the residual stresses accumulated in the samples in time.The results show that when the solution temperature is less than T_(β)(992℃),the residual stress increases gradually with the increase of solution temperature,and when the temperature is more than T_(β)(992℃),Widmanstätten structure will significantly reduce the residual stress;the mechanical properties of the specimen decrease with the increase of the solution temperature,and the different cooling methods do not have much effect on the elastic properties of the specimen.Considering the residual stress and mechanical properties,the HT1 system used in this paper is the best.This study is of great significance for the reasonable suppression of residual stress and the regulation of mechanical properties of TC4 titanium alloy fabricated by laser additive manufacturing.
文摘Ruthenium, one of the platinum group metals, has drawn much attention due to its catalytic behavior, hardness, electrical conductivity and density. Ruthenium particles are usually prepared on a small scale by the polyol process, however, the size of the obtained ruthenium nanoparticles is most below 10 nm. In this work, ruthenium particles about 200 nm in diameter were obtained in aqueous solution by using ammonium formate as the reducing agent. To have a better control of particle's size and shape, the effects of PVP, mixing mode, reaction temperature, solution pH and calcination temperature were investigated.
文摘Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness.
基金Project supported by program for Changjiang Scholars and Innovative Research Teamin University(IRT0713)National Basic Research Program ofChina (2007CB613702, 2007CB613701)
文摘The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as-extruded Mg-10Gd-3Y-0.6Zr (mass fraction. %) alloy were investigated. The results show that after T6 treatment, the diameter of grain increases to 20 μm. As the second phases dissolve into the matrix, the smaller and denser β′ phases precipitate inside the grains. After T6-treatment, both yield strength (TYS) and ultimate tensile strength (UTS) are increased. Comparing with that in only ageing condition (T5), the UTS and TYS increased from 365 MPa,285 MPa to 400 MPa,310 MPa, respectively, but the elongation decreased from 7.0% to 3.5%. It has been found that the effects of precipitates on the strength are stronger than that of the growth of grain size.