Accurate endpoint detection is a necessary capability for speech recognition. A new energy measure method based on the empirical mode decomposition (EMD) algorithm and Teager energy operator (TEO) is proposed to l...Accurate endpoint detection is a necessary capability for speech recognition. A new energy measure method based on the empirical mode decomposition (EMD) algorithm and Teager energy operator (TEO) is proposed to locate endpoint intervals of a speech signal embedded in noise. With the EMD, the noise signals can be decomposed into different numbers of sub-signals called intrinsic mode functions (IMFs), which is a zero-mean AM-FM component. Then TEO can be used to extract the desired feature of the modulation energy for IMF components. In order to show the effectiveness of the proposed method, examples are presented to show that the new measure is more effective than traditional measures. The present experimental results show that the measure can be used to improve the performance of endpoint detection algorithms and the accuracy of this algorithm is quite satisfactory and acceptable.展开更多
A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown....A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown. Then, a Bayesian wavelet shrinkage factor is applied to the decomposed data to estimate noise-free wavelet coefficients. The method is based on the Mixture Gaussian Distributed (MGD) modeling of sub-band coefficients. Finally, multi-resolution wavelet coefficients are reconstructed by wavelet-threshold using cycle spinning. Experimental results show that the proposed despeclding algorithm is possible to achieve an excellent balance between suppresses speckle effectively and preserves as many image details and sharpness as possible. The new method indicated its higher performance than the other speckle noise reduction techniques and minimizing the effect of pseudo-Gibbs phenomena.展开更多
The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differenti...The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differential equation (PDE) model, Kramer's PDE model. The usefulness of this method is investigated by experimental results. We apply this method to a medical X-ray image. For comparison, the X-ray image is also processed using classic Perona-Malik PDE model and Catte PDE model. Although the Perona-Malik model and Catte PDE model could also enhance the image, the quality of the enhanced images is considerably inferior compared with the enhanced image using Kramer's PDE model. The study suggests that the Kramer's PDE model is capable of enhancing medical X-ray images, which will make the X-ray images more reliable.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 60771033
文摘Accurate endpoint detection is a necessary capability for speech recognition. A new energy measure method based on the empirical mode decomposition (EMD) algorithm and Teager energy operator (TEO) is proposed to locate endpoint intervals of a speech signal embedded in noise. With the EMD, the noise signals can be decomposed into different numbers of sub-signals called intrinsic mode functions (IMFs), which is a zero-mean AM-FM component. Then TEO can be used to extract the desired feature of the modulation energy for IMF components. In order to show the effectiveness of the proposed method, examples are presented to show that the new measure is more effective than traditional measures. The present experimental results show that the measure can be used to improve the performance of endpoint detection algorithms and the accuracy of this algorithm is quite satisfactory and acceptable.
基金Supported by the Education Foundation of Anhui Province (No.2005kj058)
文摘A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown. Then, a Bayesian wavelet shrinkage factor is applied to the decomposed data to estimate noise-free wavelet coefficients. The method is based on the Mixture Gaussian Distributed (MGD) modeling of sub-band coefficients. Finally, multi-resolution wavelet coefficients are reconstructed by wavelet-threshold using cycle spinning. Experimental results show that the proposed despeclding algorithm is possible to achieve an excellent balance between suppresses speckle effectively and preserves as many image details and sharpness as possible. The new method indicated its higher performance than the other speckle noise reduction techniques and minimizing the effect of pseudo-Gibbs phenomena.
文摘The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differential equation (PDE) model, Kramer's PDE model. The usefulness of this method is investigated by experimental results. We apply this method to a medical X-ray image. For comparison, the X-ray image is also processed using classic Perona-Malik PDE model and Catte PDE model. Although the Perona-Malik model and Catte PDE model could also enhance the image, the quality of the enhanced images is considerably inferior compared with the enhanced image using Kramer's PDE model. The study suggests that the Kramer's PDE model is capable of enhancing medical X-ray images, which will make the X-ray images more reliable.