This study investigates the effects of Fe on the oxygen-evolution reaction(OER)in the presence of Au.Two distinct areas of OER were identified:the first associated with Fe sites at low overpotential(~330 mV),and the s...This study investigates the effects of Fe on the oxygen-evolution reaction(OER)in the presence of Au.Two distinct areas of OER were identified:the first associated with Fe sites at low overpotential(~330 mV),and the second with Au sites at high overpotential(~870 mV).Various factors such as surface Fe concentration,electrochemical method,scan rate,potential range,concentration,method of adding K_(2)Fe O_(4),nature of Fe,and temperature were varied to observe diverse behaviors during OER for Fe O_(x)H_(y)/Au.Trace amounts of Fe ions had a significant impact on OER,reaching a saturation point where the activity did not increase further.Strong electronic interaction between Fe and Au ions was indicated by X-ray photoelectron spectroscopy(XPS)and electron paramagnetic resonance(EPR)analyses.In situ visible spectroscopy confirmed the formation of Fe O_(4)^(2-)during OER.In situ Mossbauer and surfaceenhanced Raman spectroscopy(SERS)analyses suggest the involvement of Fe-based species as intermediates during the rate-determining step of OER.A lattice OER mechanism based on Fe O_(x)H_(y)was proposed for operation at low overpotentials.Density functional theory(DFT)calculations revealed that Fe oxide,Fe-oxide clusters,and Fe doping on the Au foil exhibited different activities and stabilities during OER.The study provides insights into the interplay between Fe and Au in OER,advancing the understanding of OER mechanisms and offering implications for the design of efficient electrocatalytic systems.展开更多
Plasmonic nanomaterials are sources of light,heat and electrons at nanometer scale.Given the outstanding performance in harvesting and converting solar energy under visible light irradiation,hybrid nanomaterials with ...Plasmonic nanomaterials are sources of light,heat and electrons at nanometer scale.Given the outstanding performance in harvesting and converting solar energy under visible light irradiation,hybrid nanomaterials with plasmonic activity have recently emerged as a new class of advanced photocatalysts.Because of the enhanced charge-separation at hybrid interfaces,the hybrids usually exhibit higher catalytic activity compared with their monometallic counterparts.Here,we review the recent progress on synthesis of plasmonic hybrid nanomaterials and their applications in photocatalysis,including H2 production,CO_(2) reduction and N2 fixation.We hope this review will give systematic and valuable reference on plasmonic solar to chemical energy conversion.展开更多
基金the National Elite Foundationthe Institute for Advanced Studies in Basic Sciences for their financial supportfinancially supported by the National Natural Science Foundation of China(22173026,22350410386,22375200,U22A202175,21961142006)。
文摘This study investigates the effects of Fe on the oxygen-evolution reaction(OER)in the presence of Au.Two distinct areas of OER were identified:the first associated with Fe sites at low overpotential(~330 mV),and the second with Au sites at high overpotential(~870 mV).Various factors such as surface Fe concentration,electrochemical method,scan rate,potential range,concentration,method of adding K_(2)Fe O_(4),nature of Fe,and temperature were varied to observe diverse behaviors during OER for Fe O_(x)H_(y)/Au.Trace amounts of Fe ions had a significant impact on OER,reaching a saturation point where the activity did not increase further.Strong electronic interaction between Fe and Au ions was indicated by X-ray photoelectron spectroscopy(XPS)and electron paramagnetic resonance(EPR)analyses.In situ visible spectroscopy confirmed the formation of Fe O_(4)^(2-)during OER.In situ Mossbauer and surfaceenhanced Raman spectroscopy(SERS)analyses suggest the involvement of Fe-based species as intermediates during the rate-determining step of OER.A lattice OER mechanism based on Fe O_(x)H_(y)was proposed for operation at low overpotentials.Density functional theory(DFT)calculations revealed that Fe oxide,Fe-oxide clusters,and Fe doping on the Au foil exhibited different activities and stabilities during OER.The study provides insights into the interplay between Fe and Au in OER,advancing the understanding of OER mechanisms and offering implications for the design of efficient electrocatalytic systems.
基金supported by the National Natural Science Foundation of China(grants 22022406,21861132016 and 21775074)the Natural Science Foundation of Tianjin(grants 20JCJQJC00110and 20JCYBJC00590)+2 种基金the Fundamental Research Funds for the Central Universities-Nankai University(000082)the 111 project(B12015)the National Key R&D Program(2017YFA0206702)。
文摘Plasmonic nanomaterials are sources of light,heat and electrons at nanometer scale.Given the outstanding performance in harvesting and converting solar energy under visible light irradiation,hybrid nanomaterials with plasmonic activity have recently emerged as a new class of advanced photocatalysts.Because of the enhanced charge-separation at hybrid interfaces,the hybrids usually exhibit higher catalytic activity compared with their monometallic counterparts.Here,we review the recent progress on synthesis of plasmonic hybrid nanomaterials and their applications in photocatalysis,including H2 production,CO_(2) reduction and N2 fixation.We hope this review will give systematic and valuable reference on plasmonic solar to chemical energy conversion.