期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Over-sampling algorithm for imbalanced data classification 被引量:13
1
作者 XU Xiaolong CHEN Wen SUN Yanfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1182-1191,共10页
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic... For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value. 展开更多
关键词 imbalanced data density-based spatial clustering of applications with noise(DBSCAN) synthetic minority over sampling technique(SMOTE) over-sampling.
在线阅读 下载PDF
RFC:a feature selection algorithm for software defect prediction 被引量:2
2
作者 XU Xiaolong CHEN Wen WANG Xinheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期389-398,共10页
Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.How... Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.However,there are redundant and irrelevant features in the software defect datasets affecting the performance of defect predictors.In order to identify and remove the redundant and irrelevant features in software defect datasets,we propose ReliefF-based clustering(RFC),a clusterbased feature selection algorithm.Then,the correlation between features is calculated based on the symmetric uncertainty.According to the correlation degree,RFC partitions features into k clusters based on the k-medoids algorithm,and finally selects the representative features from each cluster to form the final feature subset.In the experiments,we compare the proposed RFC with classical feature selection algorithms on nine National Aeronautics and Space Administration(NASA)software defect prediction datasets in terms of area under curve(AUC)and Fvalue.The experimental results show that RFC can effectively improve the performance of SDP. 展开更多
关键词 software defect prediction(SDP) feature selection CLUSTER
在线阅读 下载PDF
DCEL:classifier fusion model for Android malware detection
3
作者 XU Xiaolong JIANG Shuai +1 位作者 ZHAO Jinbo WANG Xinheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期163-177,共15页
The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Andr... The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost. 展开更多
关键词 Android malware detection deep learning ensemble learning model fusion
在线阅读 下载PDF
MTSS: multi-path traffic scheduling mechanism based on SDN 被引量:2
4
作者 XU Xiaolong CHEN Yun +1 位作者 HU Liuyun KUMAR Anup 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期974-984,共11页
Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network c... Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network. 展开更多
关键词 CLOUD data CENTER software defined networking(SDN) LOAD balancing MULTI-PATH transmission OpenFlow
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部