All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading ...All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid(HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI_2 into highly coordinated [PbI_m]~(2-m), enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on ofurther understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices.展开更多
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB3800101 and 2022YFE0110300)National Natural Science Foundation of China (No. U19A2089, 52261145696, 52073198, 92163114, and 22161142003)+3 种基金Natural Science Foundation of Jiangsu Province (BK20211598)“111” projectthe Young Elite Scientist Sponsorship Program by CASTCollaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University。
文摘All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid(HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI_2 into highly coordinated [PbI_m]~(2-m), enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on ofurther understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices.