A millimeter wave solid state source—far infrared laser combined interferometer system(MFCI)consisting of a three-channel 890 GHz hydrogen cyanide(HCN)laser interferometer and a threechannel 340 GHz solid state sourc...A millimeter wave solid state source—far infrared laser combined interferometer system(MFCI)consisting of a three-channel 890 GHz hydrogen cyanide(HCN)laser interferometer and a threechannel 340 GHz solid state source interferometer(SSI)is developed for real-time line-integrated electron density feedback and electron density profile of the EXL-50 spherical tokamak device.The interferometer system is a Mach–Zehnder type,with all probe-channels measured vertically,covering the plasma magnetic axis to the outermost closed magnetic plane.The HCN laser interferometer uses an HCN laser with a frequency of 890 GHz as a light source and modulates a100 k Hz beat signal by a rotating grating,giving a temporal resolution of 10μs.The SSI uses two independent 340 GHz solid-state diode sources as the light source,the frequency of the two sources is adjustable,and the temporal resolution of SSI can reach 1μs by setting the frequency difference of the two lasers at 1 MHz.The main optical path of the two interferometers is compactly installed on a set of double-layer optical platform directly below EXL-50.Dual optical path design using corner cube reflectors avoids the large support structures.Collinear the probebeams of two wavelengths,then the phase error caused by vibration can be compensated.At present,the phase noise of the HCN Interferometer is 0.08 rad,corresponding to a line-integrated electron density of 0.88×10^(17)m^(-2),one channel of measuring result was obtained by the MFCI system,and the highest density measured is about 0.7×10^(19)m^(-2).展开更多
Both start-up and sustainment of plasma were successfully achieved by fully non- inductive current drive using microwave with a frequency of 8.2 GHz. Plasmas current of 15 kA was implemented for 1 s. Magnetic surface ...Both start-up and sustainment of plasma were successfully achieved by fully non- inductive current drive using microwave with a frequency of 8.2 GHz. Plasmas current of 15 kA was implemented for 1 s. Magnetic surface reconstruction exhibited a plasma shape with an aspect ratio of below 1.5. The plasma current was dependent significantly on the launched microwave power and vertical magnetic field, while not affected by the mode of launched wave and the toroidal refractive index. Hard X-ray (HXR) emitted from energetic electrons accelerated by the microwave was observed, and the discharge with a plasma current over 4 kA followed the same trend as the number of photons of 10 keV to 12 keV. This suggests that the plasma current may be driven by energetic electrons. Based on the experimental conditions, alternative explanations of how the plasma current could be driven are discussed.展开更多
Magnetic sensorless sensing and control experiments with the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made to focus on the ripple frequency component of the ...Magnetic sensorless sensing and control experiments with the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made to focus on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem with the integrator of wagnetic sensors. Two kinds of control experiments have been carried out: to keep the position constant and swing the position in a triangular waveform, And magnetic sensorless sensing of plasma shape is discussed.展开更多
Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyz...Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.展开更多
A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with...A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with stacks of insulated-gate bipolar transistors,and sequentially operated to generate positive and negative CS currents.This bipolar power-supply system is controlled via a field-programmable gate array,which guarantees the safety of the entire system operation.The new OH system,assisted by electron cyclotron heating,enables the stable generation of plasma currents exceeding 100 k A.Moreover,the achieved electron density over the wide range in the major radial direction exceeds the cut-off density for one of the highpower microwave sources in QUEST.This strategy yields target plasmas for future experiments with the electron Bernstein wave.展开更多
An internal transport barrier(ITB)can be formed on EAST in exploring high-parameter operation.Previous studies show that safety factor(q)profiles,Shafranov shift and magnetohydrodynamic behaviors could be helpful in I...An internal transport barrier(ITB)can be formed on EAST in exploring high-parameter operation.Previous studies show that safety factor(q)profiles,Shafranov shift and magnetohydrodynamic behaviors could be helpful in ITB formation by suppressing anomalous transport.Recently,electron density evolution with high resolution demonstrates that fishbone could be dominant in electron density ITB formation and sustainment.The power threshold is low in the fishbone condition and the electron density profile is determined by traits of fishbone.Simulation shows that the low-k ion mode is suppressed by fishbone.Direct measurement of turbulence in the inner region shows that the internal kink mode could sustain an electron temperature ITB by suppressing the trapped electron mode.The multi-scale interaction between the kink mode and turbulence by current could be key in sustaining high-electron-temperature long-pulse operation.展开更多
Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which...Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.展开更多
基金supported by the National MCF Energy R&D Program(Nos.2019YFE03040003 and 2017YFE0301205)supported in part by Key Program of Research and Development of Hefei Science Center,CAS(No.2019HSC-KPRD001)partly supported by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu University.
文摘A millimeter wave solid state source—far infrared laser combined interferometer system(MFCI)consisting of a three-channel 890 GHz hydrogen cyanide(HCN)laser interferometer and a threechannel 340 GHz solid state source interferometer(SSI)is developed for real-time line-integrated electron density feedback and electron density profile of the EXL-50 spherical tokamak device.The interferometer system is a Mach–Zehnder type,with all probe-channels measured vertically,covering the plasma magnetic axis to the outermost closed magnetic plane.The HCN laser interferometer uses an HCN laser with a frequency of 890 GHz as a light source and modulates a100 k Hz beat signal by a rotating grating,giving a temporal resolution of 10μs.The SSI uses two independent 340 GHz solid-state diode sources as the light source,the frequency of the two sources is adjustable,and the temporal resolution of SSI can reach 1μs by setting the frequency difference of the two lasers at 1 MHz.The main optical path of the two interferometers is compactly installed on a set of double-layer optical platform directly below EXL-50.Dual optical path design using corner cube reflectors avoids the large support structures.Collinear the probebeams of two wavelengths,then the phase error caused by vibration can be compensated.At present,the phase noise of the HCN Interferometer is 0.08 rad,corresponding to a line-integrated electron density of 0.88×10^(17)m^(-2),one channel of measuring result was obtained by the MFCI system,and the highest density measured is about 0.7×10^(19)m^(-2).
文摘Both start-up and sustainment of plasma were successfully achieved by fully non- inductive current drive using microwave with a frequency of 8.2 GHz. Plasmas current of 15 kA was implemented for 1 s. Magnetic surface reconstruction exhibited a plasma shape with an aspect ratio of below 1.5. The plasma current was dependent significantly on the launched microwave power and vertical magnetic field, while not affected by the mode of launched wave and the toroidal refractive index. Hard X-ray (HXR) emitted from energetic electrons accelerated by the microwave was observed, and the discharge with a plasma current over 4 kA followed the same trend as the number of photons of 10 keV to 12 keV. This suggests that the plasma current may be driven by energetic electrons. Based on the experimental conditions, alternative explanations of how the plasma current could be driven are discussed.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Magnetic sensorless sensing and control experiments with the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made to focus on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem with the integrator of wagnetic sensors. Two kinds of control experiments have been carried out: to keep the position constant and swing the position in a triangular waveform, And magnetic sensorless sensing of plasma shape is discussed.
基金the support of Grants-in-Aid for Scientific Research (B), MEXT (No.24360358)
文摘Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.
基金supported by the NIFS Bilateral Collaboration Research Program(Nos.NIFS19-KUTR136,NIFS22KUTR169)Grant-in-Aid for Scientific Research(C)(No.21K03510)Collaborative Research Program of the RIAM in Kyushu University。
文摘A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with stacks of insulated-gate bipolar transistors,and sequentially operated to generate positive and negative CS currents.This bipolar power-supply system is controlled via a field-programmable gate array,which guarantees the safety of the entire system operation.The new OH system,assisted by electron cyclotron heating,enables the stable generation of plasma currents exceeding 100 k A.Moreover,the achieved electron density over the wide range in the major radial direction exceeds the cut-off density for one of the highpower microwave sources in QUEST.This strategy yields target plasmas for future experiments with the electron Bernstein wave.
基金supported by the National Key R&D Program of China(No.2017YFE0301705)supported in part by the Key Program of Research and Development of Hefei Science Center,CAS(No.2019HSC-KPRD001)+1 种基金supported by National Natural Science Foundation of China(Nos.11975271 and 11675211)partly supported by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu University。
文摘An internal transport barrier(ITB)can be formed on EAST in exploring high-parameter operation.Previous studies show that safety factor(q)profiles,Shafranov shift and magnetohydrodynamic behaviors could be helpful in ITB formation by suppressing anomalous transport.Recently,electron density evolution with high resolution demonstrates that fishbone could be dominant in electron density ITB formation and sustainment.The power threshold is low in the fishbone condition and the electron density profile is determined by traits of fishbone.Simulation shows that the low-k ion mode is suppressed by fishbone.Direct measurement of turbulence in the inner region shows that the internal kink mode could sustain an electron temperature ITB by suppressing the trapped electron mode.The multi-scale interaction between the kink mode and turbulence by current could be key in sustaining high-electron-temperature long-pulse operation.
基金supported by Grant-in-Aid for JSPS Fellows(KAKENHI Grant Number 16H02441,24656559)performed with the support and under the auspices of the NIFS Collaboration Research Program(NIFS05KUTRO14,NIFS11KUTR061,NIFS13KUTR085,NIFS14KUTR103)+1 种基金supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu Universitypartly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.