期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:2
1
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation Electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
在线阅读 下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
2
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance Anode materials Microstructural regulations Surface modifications
在线阅读 下载PDF
Boosting electrochemical reduction of CO_(2)to CO using molecule-regulated Ag nanoparticle in ionic liquids
3
作者 Fangfang Li Kuilin Peng +3 位作者 Chongyang Jiang Shaojuan Zeng Xiangping Zhang Xiaoyan Ji 《Green Energy & Environment》 2025年第4期813-820,共8页
Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big ... Electrochemical reduction of CO_(2)is a promising approach to convert CO_(2)to high-valued chemicals and fuels.However,developing efficient electrocatalysts featuring desirable activity and selectivity is still a big challenge.In this work,a strategy of introducing functionalized molecules with desirable CO_(2)affinity to regulate Ag catalyst for promoting electrochemical reduction of CO_(2)was proposed.Specifically,3-mercapto-1,2,4-triazole was introduced onto the Ag nanoparticle(Ag-m-Triz)for the first time to achieve selectively converting CO_(2)to carbon monoxide(CO).This Ag-m-Triz exhibits excellent performance for CO_(2)reduction with a high CO Faradaic efficiency(FECO)of 99.2%and CO partial current density of 85.0 mA cm^(-2)at-2.3 V vs.Ag/Agt in H-cell when combined with the ionic liquid-based electrolyte,30 wt%1-butyl-3-methylimidazolium hexafluorophosphate([Bmim][PF6])-65 wt%acetonitrile(AcN)-5 wt%H2O,which is 2.5-fold higher than the current density in Ag-powder under the same condition.Mechanism studies confirm that the significantly improved performance of Ag-m-Triz originates from(i)the stronger adsorption ability of CO_(2)molecule and(ii)the weaker binding energy to form the COOH*intermediate on the surface of Ag-m-Triz compared with the Ag-powder catalyst,which boosts the conversion of CO_(2)to CO.This research provides a facile way to regulate electrocatalysts for efficient CO_(2)reduction by introducing functionalized molecules. 展开更多
关键词 CO_(2)reduction CO ELECTROCHEMICAL Molecule-regulated Silver Ionic liquid
在线阅读 下载PDF
Microfluidic reactors for paired electrosynthesis:Fundamentals,applications and future prospects
4
作者 Hao Xue Zhi-Hao Zhao +1 位作者 Menglei Yuan Guangjin Zhang 《Green Energy & Environment》 2025年第3期471-499,共29页
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still... Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies. 展开更多
关键词 Paired electrosynthesis Microfluidic reactor Laminar flow Scaling-up strategy
在线阅读 下载PDF
Effect of Plasma Spheroidization Process on the Microstructure and Crystallographic Phases of Silica, Alumina and Nickel Particles 被引量:8
5
作者 胡鹏 闫世凯 +3 位作者 袁方利 白柳杨 李晋林 陈运法 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第5期611-615,共5页
During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle w... During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials. 展开更多
关键词 radio frequency plasma SPHEROIDIZATION MICROSTRUCTURE crystal phase silica alumina NICKEL
在线阅读 下载PDF
NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue 被引量:1
6
作者 Fen Yue Christian Marcus Pedersen +5 位作者 Xiuyin Yan Yequn Liu Danlei Xiang Caifang Ning Yingxiong Wang Yan Qiao 《Green Energy & Environment》 SCIE 2018年第2期163-171,共9页
Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains... Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques(~1H and ^(13)C NMR,~1H-~1H COSY and ~1H-^(13)C HSQC etc.) especially 1D selective gradient total correlation spectroscopy(TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions(180-240 ℃ at 8 h, and 1-24 h at 240 ℃) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. 展开更多
关键词 NMR Hydrothermal carbonization Furfural residue Stock process water
在线阅读 下载PDF
Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries:A review 被引量:1
7
作者 Liu Yang Shuaining Li +6 位作者 Yuming Zhang Hongbo Feng Jiangpeng Li Xinyu Zhang Huai Guan Long Kong Zhaohui Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期30-45,I0002,共17页
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e... Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries. 展开更多
关键词 Lithium-ion batteries Silicon/carbon composites Molecular scale Nanoscale MICROSCALE
在线阅读 下载PDF
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds 被引量:1
8
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation Oxidation mechanisms Substituent effect
在线阅读 下载PDF
Removal of Phenanthrene from Contaminated Soil by Ozonation Process
9
作者 Yang Yixin Gao Wenfang +1 位作者 Yang Jingchao Cao Hongbin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第3期73-79,共7页
In order to improve the ozonation efficiency for the remediation of PAHs contaminated soil,the performance experiments were carried out with quartz sand artificially contaminated with phenanthrene.The byproducts of ph... In order to improve the ozonation efficiency for the remediation of PAHs contaminated soil,the performance experiments were carried out with quartz sand artificially contaminated with phenanthrene.The byproducts of phenanthrene were detected by GC-MS and the toxicity was evaluated by seed germination tests.The influence of the particle size and moisture content of quartz sand on the ozonation efficiency was investigated.In addition,two kinds of real soil was used to compare with the quartz sand.It was revealed that the phenanthrene removal rate reached 96%after 600 minutes by using the ozonation process.Three byproducts of phenanthrene,including 9,10-phenanthrenedione,(1,1’-biphenyl)-2,2’-dicarboxaldehyde,and(1,1’-biphenyl)-2,2’-dicarboxylic acid,were obtained.As proven by seed germination tests,the toxicity of the byproducts was lower than phenanthrene.The phenanthrene was removed more effectively by ozonation in the quartz sand with finer particle size.The ozonation efficiency was significantly improved by increasing the moisture content,which is assumed to be related to the alkalinity of quartz sand. 展开更多
关键词 OZONATION PHENANTHRENE quartz sand SOIL REMEDIATION
在线阅读 下载PDF
Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes
10
作者 Haiman Hu Jiajia Li +3 位作者 Yue Wu Wenhao Fang Haitao Zhang Xiaoyan Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期110-119,共10页
The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambigu... The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO_(2)(SiO_(2)@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li+transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher t+Li, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO_(2) provided an additional Li+transport pathway(Li+→ SiO_(2)@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries. 展开更多
关键词 Ionic liquid CONFINEMENT Ionic transport pathway Lithium-ion transport kinetics Lithium metal batteries
在线阅读 下载PDF
A stepwise approach to enhancing flotation of low-grade zinnwaldite through the cationic/DL-2-octanol/anionic reagent combinations: Behavior and mechanism analysis
11
作者 Zhonghua Xue Yali Feng +2 位作者 Haoran Li Jinrong Ju Xingquan Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期881-891,共11页
In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of ... In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of low-grade zinnwaldite ore. The binary collector is a mixture of dodecylamine polyoxyethylene ether and DL-2-octanol. A binary collector is added first, followed by sodium oleate, known as a ternary collector. Under acidic conditions, the recovery of Li2O in the concentrate was increased by 8.26% with the binary collector and 13.70% with the ternary collector, compared to the dodecylamine polyoxyethylene ether. The binary collector enhanced the dispersibility of the single collector, while co-adsorption strengthened the hydrophobic nature of the zinnwaldite surface. Consequently, zinnwaldite particles,after the application of binary collector, displayed inter-particle flocculation and attachment to bubbles within 60×10^(-9)m compared to other particles. Ternary collector exhibited the capacity to lower critical micelle concentration and surface tension, subsequently inducing a denser and thicker hydrophobic layer through electrostatic forces, hydrophobic interactions, and chemical reactions. The objective of this research is to facilitate the recovery of lithium resources from low-grade ores in order to meet the needs of sustainable development. 展开更多
关键词 Zinnwaldite Molecular dynamics simulation FLOTATION Ternary collector Extended DLVO theory
在线阅读 下载PDF
Balancing electron transfer and intermediate adsorption ability of metallic Ni-Fe-RE-P bifunctional catalysts via 4f-2p-3d electron interaction for enhanced water splitting
12
作者 Hong-Rui Zhao Cheng-Zong Yuan +8 位作者 Chenliang Zhou Wenkai Zhao Lunliang Zhang Cong-Hui Li Lei Xin Fuling Wu Shufeng Ye Xiaomeng Zhang Yunfa Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期458-465,共8页
Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking ... Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking efficient strategies.Herein,one efficient and universal strategy is developed to greatly regulate electronic structures of the metallic Ni-Fe-P catalysts via in-situ introducing the rare earth(RE)atoms(Ni-Fe-RE-P,RE=La,Ce,Pr,and Nd).Accordingly,the as-prepared optimal Ni-Fe-Ce-P/CC self-supported bifunctional electrodes exhibited superior electrocatalytic activity and excellent stability with the low overpotentials of 247 and 331 mV at 100 mA cm^(-2) for HER and OER,respectively.In the assembled electrolyzer,the Ni-Fe-Ce-P/CC as bifunctional electrodes displayed low operation potential of 1.49 V to achieve a current density of 10 mA cm^(-2),and the catalytic performance can be maintained for 100 h.Experimental results combined with density functional theory(DFT)calculation reveal that Ce doping leads to electron decentralization and crystal structure distortion,which can tailor the band structures and d-band center of Ni-Fe-P,further increasing conductivity and optimizing intermediate adsorption energy.Our work not only proposes a valuable strategy to regulate the electron transfer and intermediate adsorption of electrocatalysts via RE atoms doping,but also provides a deep under-standing of regulation mechanism of metallic electrocatalysts for enhanced water splitting. 展开更多
关键词 RE atoms Electron transfer Adsorption energy Oxygen evolution Hydrogen evolution
在线阅读 下载PDF
MOF-assisted Synthesis of Dual-atom Palladium Catalysts for Acetylene Semi-hydrogenation
13
作者 Chen Jie Xu Yuebing +2 位作者 Qi Jian Liu Bing Liu Xiaohao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期42-52,共11页
The selective removal of trace acetylene in ethylene feed gas is of great significance in the petrochemicalindustry;however, there are still challenges in designing and developing high-performance catalysts. Here, a M... The selective removal of trace acetylene in ethylene feed gas is of great significance in the petrochemicalindustry;however, there are still challenges in designing and developing high-performance catalysts. Here, a MOFassistedencapsulation strategy was adopted for the precise synthesis of diatomic Pd2 sites on a ZnO support. When usedfor the acetylene semi-hydrogenation reaction, the dual-atom Pd2-ZnO catalyst exhibited improved catalytic performance,achieving complete conversion of acetylene at 125 °C with an 89% selectivity to ethene, as compared to Pd single-atom andnanoparticles. This enhancement was mainly attributed to the catalyst’s ability to dissociate H2 and facilitate the desorptionof intermediate C2H4. Moreover, the strong interaction between the support and the diatomic Pd sites was responsible for thecatalyst’s excellent stability during the long-term reaction. 展开更多
关键词 dual-atom palladium acetylene semi-hydrogenation MOFs hydrogen dissociation intermediate
在线阅读 下载PDF
Revealing interfacial charge redistribution of homologous Ru-RuS_(2) heterostructure toward robust hydrogen oxidation reaction
14
作者 Yi Liu Lianrui Cheng +5 位作者 Shuqing Zhou Yuting Yang Chenggong Niu Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期332-339,共8页
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)... Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance. 展开更多
关键词 HETEROSTRUCTURE Hollow spherical structure Hydrogen oxidation reaction Charge redistribution Density functional calculation
在线阅读 下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
15
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode Structural features Preparation technology Ultralow Pt loading
在线阅读 下载PDF
Anti-fatigue activity and mechanism of crocetin loaded nanoliposome in acute exercise-treated mice
16
作者 Jian Nan Jinglei Li +4 位作者 Haishan Wu Haoran Cheng Hyun Jin Park Qingsheng Zhao Liu Yang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3361-3370,共10页
Crocetin displays strong antioxidant,anti-inflammatory and anti-depression activity which is promising to relieve symptoms of fatigue.As a carotenoid,crocetin is difficult to dissolve in water and highly unstable agai... Crocetin displays strong antioxidant,anti-inflammatory and anti-depression activity which is promising to relieve symptoms of fatigue.As a carotenoid,crocetin is difficult to dissolve in water and highly unstable against many environmental factors.Nanoliposome is used to encapsulate crocetin to improve its water dispersion.In the present study,the antifatigue activities and potential mechanism of crocetin loaded nanoliposome(CLN)was extensively investigated.The potential antifatigue pathway of CLN was analyzed.Furthermore,impact of CLN on the gut microbiota structure was examined which contributes to its antifatigue functions.CLN significantly increases exhaustive swimming time of fatigue mice,decreases the blood contents of lactic,blood urea nitrogen(BUN)and malondialdehyde(MDA).At the same time,CLN improves the activity of glutathione peroxidase(GSH-Px)and succinate dehydrogenase(SDH)enzyme,attenuates the oxidant stress in mice.CLN activates the adenosine monophosphate-activated kinase(AMPK)/peroxisome proliferator-activated receptor gamma coactivator-1α(PGC-1α)signaling pathway of fatigue mice,increases the mRNA expression of ATP synthase.It also increases mRNA expression of mitochondrial transcription factor A(TFAM)which promotes mitochondrial biogenesis.Additionally,CLN ameliorates the gut microbiota structure by increasing the abundance of genus such as Lactobacillus in fatigue mice.In summary,CLN exerts strong anti-fatigue properties by decreasing the oxidant stress and the contents of harmful metabolites,augmenting the production of ATP,and potentially ameliorating the gut microbiota structure. 展开更多
关键词 CROCETIN Nanoliposome Fatigue AMPK/PGC-1αpathway Gut microbiota
在线阅读 下载PDF
Increased Oxygen Vacancies in CuO-ZnO Snowflake-like Composites Drive the Hydrogenation of CO_(2) to Methanol
17
作者 San Xiaoguang Wu Wanmeng +4 位作者 Zhang Lei Meng Dan Chang Xiangshuang Tan Jianen Qi Jian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期22-33,共12页
Cu/ZnO is widely used in the hydrogenation of carbon dioxide (CO_(2)) to methanol (CH_(3)OH) to improve the lowconversion rate and selectivity generally observed. In this work, a series of In, Zr, Co, and Ni-doped CuO... Cu/ZnO is widely used in the hydrogenation of carbon dioxide (CO_(2)) to methanol (CH_(3)OH) to improve the lowconversion rate and selectivity generally observed. In this work, a series of In, Zr, Co, and Ni-doped CuO-ZnO catalysts wassynthesized via a hydrothermal method. By introducing a second metal element, the activity and dispersion of the activesites can be adjusted and the synergy between the metal and the carrier can be enhanced, forming an abundance of oxygenvacancies. Oxygen vacancies not only adsorb CO_(2) but also activate the intermediates in methanol synthesis, playing a keyrole in the entire reaction. Co3O4-CuO-ZnO had the best catalytic performance (a CO_(2) conversion rate of 9.17%;a CH_(3)OHselectivity of 92.77%). This study describes a typical strategy for multi-component doping to construct a catalyst with anabundance of oxygen vacancies, allowing more effective catalysis to synthesize CH_(3)OH from CO_(2). 展开更多
关键词 CuO-ZnO catalyst CO_(2)hydrogenation to CH_(3)OH doping oxygen vacancy SYNERGY
在线阅读 下载PDF
Current collectors’ effects on the electrochemical performance of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) suspension electrodes for lithium slurry battery
18
作者 Linshan Peng Yufei Ren +3 位作者 Zhaoqiang Yin Zhitong Wang Xiangkun Wu Lan Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1306-1313,共8页
Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable sl... Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell. 展开更多
关键词 Semi-solid flow battery Slurry electrode Current collector Electronic resistance Carbon coated Al
在线阅读 下载PDF
Advantageous properties of halide perovskite quantum dots towards energy-efficient sustainable applications
19
作者 Qian Zhao Shuo Wang +9 位作者 Young-Hoon Kim Shekhar Mondal Qingqing Miao Simiao Li Danya Liu Miao Wang Yaxin Zhai Jianbo Gao Abhijit Hazarika Guo-Ran Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期949-965,共17页
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov... As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges. 展开更多
关键词 Perovskite quantum dot LIGHT-EMITTING Detector Laser Solar cell
在线阅读 下载PDF
Ammonia-induced CuO/13X for H_(2)S removal from simulated blast furnace gas at low temperature
20
作者 Erping Cao Yuhua Zheng +6 位作者 Hao Zhang Jianshan Wang Yuran Li Tingyu Zhu Zhan-guo Zhang Guangwen Xu Yanbin Cui 《Green Energy & Environment》 SCIE EI CAS 2025年第1期139-149,共11页
Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)gene... Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)generate harmful environmental emissions.The desulfurization of BFG is urgent for integrated steel plants due to the stringent ultra-low emission standards.Compared with other desulfurization materials,zeolite-based adsorbents represent a viable option with low costs and long service life.In this study,an ammonia-induced CuO modified 13X adsorbent(NH_(3)–CuO/13X)was prepared for H_(2)S removal from simulated BFG at low temperature.The XRD,H_(2)-TPR and TEM analysis proved that smaller CuO particles were formed and the dispersion of Cu on the surface of 13X zeolite was improved via the induction of ammonia.Evaluation on H_(2)S adsorption performance of the adsorbent was carried out using simulated BFG,and the results showed that NH_(3)–CuO/13X-3 has better breakthrough sulfur capacity,which was more than twice the sulfur capacity of CuO/13X.It is proposed that the enhanced desulfurization performance of NH_(3)–CuO/13X is attributed to an abundant pore of 13X,and combined action of 13X and CuO.This work provided an effective way to improve the sulfur capacity of zeolite-based adsorbents via impregnation method by ammonia induction. 展开更多
关键词 Blast furnace gas DESULFURIZATION Ammonia-induced CUO 13X zeolite
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部