Gramicidin A(gA)is a kind of antibiotic peptide produced by bacillus brevis and it can dimerize across lipid bilayers to form a monovalent cation channel.In this work,we investigate the impact of cholesterol in the li...Gramicidin A(gA)is a kind of antibiotic peptide produced by bacillus brevis and it can dimerize across lipid bilayers to form a monovalent cation channel.In this work,we investigate the impact of cholesterol in the lipid bilayer on the binding of potassium ions with the gA channel and the transport of the ions across the channel.The results indicate that cholesterol can significantly influence the conformational stability of the gA channel and cause the channel deformation which inhibits the potassium ion binding with the channel and transport across the channel.The work provides some molecular insights into understanding of influence of lipids on the activity of gA channel in both model membranes and plasma membranes of intact cells.展开更多
Cu(In, Ga)Se2 thin films are deposited on Mo-coated glass substrates by Se vapour selenization of sputtered metallic precursors in the atmosphere of Ar gas flow under a pressure of about 10 Pa. The in situ heat trea...Cu(In, Ga)Se2 thin films are deposited on Mo-coated glass substrates by Se vapour selenization of sputtered metallic precursors in the atmosphere of Ar gas flow under a pressure of about 10 Pa. The in situ heat treatment of as-grown precursor leads to the formation of a better alloy. During selenization, the growth of CuInSe2 phase preferably proceeds through Se-poor phases as CuSe and InSe at relatively low substrate temperature of 250℃, due to the absence of In2Se3 at intermediate stage at low reactor pressure. Subsequently, the Cu(In,Ga)Se2 phase is produced by the reactive diffusion of CuInSe2 with a Se-poor GaSe phase at high temperature of up to 560℃. The final film exhibits smooth surface and large grain size. The absorber is used to fabricate a glass/Mo/Cu(In, Ga)Se2/CdS/ZnO cell with the total-area efficiency of about 7%. The low open-circuit voltage value of the cell fabricated should result from the nonuniform distribution of In and Ga in the absorber, due to the diffusion-controlled reaction during the phase formation. The films, as well as devices, are characterized.展开更多
Composition dependence of quaternary CuIn1-x GaxSe2 films on Ga content has been systematically investigated by Raman scattering. The dominant A1 mode shifts from 174cm^-1 for CuInSe2 to 185cm^-1 for CuGaSe2 in an app...Composition dependence of quaternary CuIn1-x GaxSe2 films on Ga content has been systematically investigated by Raman scattering. The dominant A1 mode shifts from 174cm^-1 for CuInSe2 to 185cm^-1 for CuGaSe2 in an approximately polynomial curve other than a linear curve, indicating existence of asymmetric distribution of Ga and In on a microscopic scale in films. With Ga content x 〉 0.3, the significantly broadening and intensity decrease of A1 modes suggest the degradation of crystalline quality of chalcopyrite phase. Additionally, the quenching of additional Raman band at 183cm^-1 for the Ga-rich films reveals that CuAu-ordered phase can coexist in nominal chalcopyrite CuInSe2 films but not in CuGaSe2, due to Ga inhibition effect.展开更多
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers w...This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).展开更多
The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree o...The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers,which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review.展开更多
In this paper the dependence of structural properties of the quaternary CuIn1-xGaxSe2 films with tetragonal structure on the Ga content has been systematically investigated by Raman scattering and x-ray diffraction sp...In this paper the dependence of structural properties of the quaternary CuIn1-xGaxSe2 films with tetragonal structure on the Ga content has been systematically investigated by Raman scattering and x-ray diffraction spectra. The shift of the dominant A1 mode, unlike the lattice constants, does not follow the linear Vegard law with increasing Ga content x, whereas exhibits approximately polynomial change from 174 cm^-1 for CuInSe2 to 185 cm^-1 for CuGaSe2. Such behaviour should be indicative of presence of the asymmetric distribution of Ga and In on a microscopic scale in the films, due to Ga addition. The changes in the tetragonal distortion η lead to a significant variation in the anion displacement parameter U, which should be responsible for the evolution of bond parameters and resultant Raman bands with x.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11674287)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19A040009)。
文摘Gramicidin A(gA)is a kind of antibiotic peptide produced by bacillus brevis and it can dimerize across lipid bilayers to form a monovalent cation channel.In this work,we investigate the impact of cholesterol in the lipid bilayer on the binding of potassium ions with the gA channel and the transport of the ions across the channel.The results indicate that cholesterol can significantly influence the conformational stability of the gA channel and cause the channel deformation which inhibits the potassium ion binding with the channel and transport across the channel.The work provides some molecular insights into understanding of influence of lipids on the activity of gA channel in both model membranes and plasma membranes of intact cells.
基金Supported by China Postdoctoral Science Foundation under Grant No 2005037539, and the National High-Tech Research and Development Programme of China under Grant No 2004AA513020.
文摘Cu(In, Ga)Se2 thin films are deposited on Mo-coated glass substrates by Se vapour selenization of sputtered metallic precursors in the atmosphere of Ar gas flow under a pressure of about 10 Pa. The in situ heat treatment of as-grown precursor leads to the formation of a better alloy. During selenization, the growth of CuInSe2 phase preferably proceeds through Se-poor phases as CuSe and InSe at relatively low substrate temperature of 250℃, due to the absence of In2Se3 at intermediate stage at low reactor pressure. Subsequently, the Cu(In,Ga)Se2 phase is produced by the reactive diffusion of CuInSe2 with a Se-poor GaSe phase at high temperature of up to 560℃. The final film exhibits smooth surface and large grain size. The absorber is used to fabricate a glass/Mo/Cu(In, Ga)Se2/CdS/ZnO cell with the total-area efficiency of about 7%. The low open-circuit voltage value of the cell fabricated should result from the nonuniform distribution of In and Ga in the absorber, due to the diffusion-controlled reaction during the phase formation. The films, as well as devices, are characterized.
基金Supported by China Postdoctoral Science Foundation under Grant No 2005037539, and the National High Technology Programme of China under Grant No 2004AA513020.
文摘Composition dependence of quaternary CuIn1-x GaxSe2 films on Ga content has been systematically investigated by Raman scattering. The dominant A1 mode shifts from 174cm^-1 for CuInSe2 to 185cm^-1 for CuGaSe2 in an approximately polynomial curve other than a linear curve, indicating existence of asymmetric distribution of Ga and In on a microscopic scale in films. With Ga content x 〉 0.3, the significantly broadening and intensity decrease of A1 modes suggest the degradation of crystalline quality of chalcopyrite phase. Additionally, the quenching of additional Raman band at 183cm^-1 for the Ga-rich films reveals that CuAu-ordered phase can coexist in nominal chalcopyrite CuInSe2 films but not in CuGaSe2, due to Ga inhibition effect.
基金supported by the National Basic Research Program of China (Grant Nos 2006CB202602 and 2006CB202603)the Tianjin Assistant Foundation for the National Basic Research Program of China (Grant No 07QTPTJC29500)the Natural Science Foundation of Tianjin (Grant No 07JCYBJC04000)
文摘This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).
基金supported by the National Natural Science Foundation of China (Grant Nos.11774314 and 12274370)Scientific Research Start-up Fund of Zhejiang Normal University (Grant No.YS304222903)。
文摘The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers,which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review.
基金Project supported by China Postdoctoral Science Foundation (Grant No 2005037539), and the National High-Tech Research and Development Programm of China (Grant No 2004AA513020). Acknowledgments 0ne of the authors (Xu Chuan-Ming) gratefully acknowledges Professor Xu Cun-Yi from the Structure Research Laboratory of Chinese Academy of Sciences for the sample measurements.
文摘In this paper the dependence of structural properties of the quaternary CuIn1-xGaxSe2 films with tetragonal structure on the Ga content has been systematically investigated by Raman scattering and x-ray diffraction spectra. The shift of the dominant A1 mode, unlike the lattice constants, does not follow the linear Vegard law with increasing Ga content x, whereas exhibits approximately polynomial change from 174 cm^-1 for CuInSe2 to 185 cm^-1 for CuGaSe2. Such behaviour should be indicative of presence of the asymmetric distribution of Ga and In on a microscopic scale in the films, due to Ga addition. The changes in the tetragonal distortion η lead to a significant variation in the anion displacement parameter U, which should be responsible for the evolution of bond parameters and resultant Raman bands with x.