期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sodium Storage Performance of Mixed-phase Sodium Titanate Tuned by Carbon Dots
1
作者 LI Dan HU Honghui +4 位作者 HOU Hongshuai ZHANG Sheng LIU Lijie JING Mingjun WU Tianjing 《高等学校化学学报》 北大核心 2025年第6期103-114,共12页
Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the... Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage. 展开更多
关键词 Na_(2)Ti_(3)O_(7) Na_(2)Ti_(6)O_(13) Mixed-phases Carbon dots Sodium storage behavior
在线阅读 下载PDF
Dual-surface capped hydroxyapatite nano-amendment with tuned alternate long-short chain configuration for efficient adsorption towards multi-heavy metal ions in complex-contaminated systems
2
作者 GAO Mochou MENG Shan +7 位作者 ZHANG Jinzhong FENG Wenhua DONG Shuo CHEN Jianping ZHAO Yanbao YU Laigui YING Rongrong ZOU Xueyan 《无机化学学报》 北大核心 2025年第7期1427-1438,共12页
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an... Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides. 展开更多
关键词 heavy metal HYDROXYAPATITE nano-amendment configuration tuning synergistic adsorption
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部