期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries:A review 被引量:1
1
作者 Liu Yang Shuaining Li +6 位作者 Yuming Zhang Hongbo Feng Jiangpeng Li Xinyu Zhang Huai Guan Long Kong Zhaohui Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期30-45,I0002,共17页
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e... Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries. 展开更多
关键词 Lithium-ion batteries Silicon/carbon composites Molecular scale Nanoscale MICROSCALE
在线阅读 下载PDF
Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm
2
作者 Jianye Li Hao Wang +8 位作者 Yibing Luo Zijing Zhou He Zhang Huizhi Chen Kai Tao Chuan Liu Lingxing Zeng Fengwei Huo Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期1-22,共22页
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ... Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios. 展开更多
关键词 Stretchable hydrogel sensors Multimodal e-skin Artificial intelligence Post-earthquake rescue Wireless toxic gas alarm
在线阅读 下载PDF
Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress 被引量:3
3
作者 Lei Tao Jian Qiu +10 位作者 Bo Sun Xiaojuan Wang Xueqin Ran Lin Song Wei Shi Qi Zhong Ping Li Hui Zhang Yingdong Xia Peter Müller-Buschbaum Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期395-415,I0011,共22页
Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-j... Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-junction or tandem solar cells,which are designed to beyond the Shockley-Queisser(S-Q)limit of single-junction solar cells.However,the poor long-term operational stability of WBG PSCs limits their further employment and hinders the marketization of multi-junction or tandem solar cells.In this review,recent progresses on improving environmental stability of mixed-halide WBG PSCs through different strategies,including compositional engineering,additive engineering,interface engineering,and other strategies,are summarized.Then,the outlook and potential direction are discussed and explored to promote the further development of WBG PSCs and their applications in multijunction or tandem solar cells. 展开更多
关键词 Mixed halide perovskite STABILITY Tandem solar cells Wide bandgap perovskite
在线阅读 下载PDF
Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells:Progress,challenges,and perspectives 被引量:1
4
作者 Shaoshen Lv Weiyin Gao +9 位作者 Yanghua Liu He Dong Nan Sun Tingting Niu Yingdong Xia Zhongbin Wu Lin Song Chenxin Ran Li Fu Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期371-404,共34页
The exploration of low bandgap perovskite material to approach Shockley-Queisser limit of photovoltaic device is of great significance,but it is still challenging.During the past few years,tin–lead(Sn-Pb)mixed perovs... The exploration of low bandgap perovskite material to approach Shockley-Queisser limit of photovoltaic device is of great significance,but it is still challenging.During the past few years,tin–lead(Sn-Pb)mixed perovskites with low bandgaps have been rapidly developed,and their single junction solar cells have reached power conversion efficiency(PCE)over 21%,which also makes them ideal candidate as low bandgap sub-cell for tandem device.Nevertheless,due to the incorporation of unstable Sn^(2+),the stability issue becomes the vital problem for the further development of Sn-Pb mixed perovskite solar cells(PSCs).In this review,we are dedicated to give a full view in current understanding on the stability issue of SnPb mixed perovskites and their PSCs.We begin with the demonstration on the origin of instability of Sn-Pb mixed perovskites,including oxidation of Sn^(2+),defects,and interfacial layer induced instability.Sequentially,the up-to-date developments on the stability improvement of Sn-Pb mixed perovskites and their PSCs is systematically reviewed,including composition engineering,additive engineering,and interfacial engineering.At last,the current challenges and future perspectives on the stability study of Sn-Pb mixed PSCs are discussed,which we hope could promote the further application of Sn-Pb mixed perovskites towards commercialization. 展开更多
关键词 Sn-Pb mixed perovskites STABILITY Interfacial defects Energy level mismatch Solar cells
在线阅读 下载PDF
Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells 被引量:1
5
作者 Guiqiang Cheng Jian Wang +6 位作者 Rong Yang Cheng Li Hao Zhang Nana Wang Renzhi Li Jianpu Wang Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期205-209,I0007,共6页
Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D ... Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D perovskite solar cells.Here,we demonstrate that 3-halogon-substituted benzylammonium iodide(3X-BAI,X=F,Cl,Br,I)can significantly affect the orientation of low-dimensional perovskites and charge transport from perovskite to hole extraction layer,as well as device performance.With 3Br-BAI,we achieve the highest device efficiency of 13.21%for quasi-2D perovskites with a nominal n=3 average composition.Our work provides a facile approach to regulate vertical crystal orientation and charge transport via tuning the molecular structure of organic spacer toward high performance quasi-2D perovskite solar cells. 展开更多
关键词 Perovskites Solar cells Quasi-two dimensional ORIENTATION Charge transport
在线阅读 下载PDF
Perovskite Light-emitting Diodes with Record High EQE of 20.7% and ECE of 18.6%
6
作者 ZHANG Hongjian ZHU Jixin 《材料导报》 EI CAS CSCD 北大核心 2019年第2期203-204,共2页
Light-emitting diodes(LEDs)have wide applications in the areaof lighting,medical devices,display screens,etc.Owing to theexcellent optoelectronic properties and the facile solution proces-sing methods,organometal hali... Light-emitting diodes(LEDs)have wide applications in the areaof lighting,medical devices,display screens,etc.Owing to theexcellent optoelectronic properties and the facile solution proces-sing methods,organometal halide perovskites are extensively stu-died and proved to be promising light.emitting materials to fabri-cate LED devices[1-2].Generally,nonradiative recombination andlight trapping are two main factors to impede the efficiency en-hancement of LEDs,which are more serious in perovskite mate-rials for the high refractive index. 展开更多
关键词 PEROVSKITE light EMITTING DIODE EQE ECE
在线阅读 下载PDF
Enhancing Li cycling coulombic efficiency while mitigating “shuttle effect” of Li-S battery through sustained release of LiNO_(3)
7
作者 Qi Jin Kaixin Zhao +3 位作者 Lili Wu Lu Li Long Kong Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期22-29,共8页
In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely us... In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely used as an additive in electrolytes to build a high-quality SEI,but its self-sacrificial nature limits the ability to mitigate the shuttle effect and stabilize Li anode during long-term cycling.To counteract LiNO_(3) consumption during long-term cycling without using a high initial concentration,inspired by sustainedrelease drugs,we encapsulated LiNO_(3) in lithiated Nafion polymer and added an electrolyte co-solvent(1,1,2,2-tetrafluoroethylene 2,2,2-trifluoromethyl ether) with poor LiNO_(3) solubility to construct highquality and durable F-and N-rich SEI.Theoretical calculations,experiments,multiphysics simulations,and in-situ observations confirmed that the F-and N-rich SEI can modulate lithium deposition behavior and allow persistent repair of SEI during prolonged cycling.Hence,the F-and N-rich SEI improves the Li anode cycling CE to 99.63% and alleviates the shuttle effect during long-term cycling.The lithium anode with sustainable F-and N-rich SEI shows a stable Li plating/stripping over 2000 h at 1 mA cm^(-2).As expected,Li‖S full cells with this SEI achieved a long lifespan of 250 cycles,far exceeding cells with a routine SEI.The Li‖S pouch cell based on F-and N-rich SEI also can achieve a high energy density of about300 Wh kg^(-1) at initial cycles.This strategy provides a novel design for high-quality and durable SEls in LSBs and may also be extendable to other alkali metal batteries. 展开更多
关键词 Lithium-sulfur battery Solid electrolyte interphase LiNO_(3) Coulombic efficiency Shuttle effect
在线阅读 下载PDF
Controllable assembling of highly-doped linked carbon bubbles on graphene microfolds
8
作者 Tieqi Huang Chen Chen +6 位作者 Yunfeng Hu Kang Hu Wenqing Wang Kun Rui Huijuan Lin Ruizi Li Jixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期500-507,共8页
Carbon-based microassemblies(CMs) have attracted significant attention in numerous applications due to their unique hierarchical structures and delicate building blocks,especially when hollow carbon spheres(HCSs) are ... Carbon-based microassemblies(CMs) have attracted significant attention in numerous applications due to their unique hierarchical structures and delicate building blocks,especially when hollow carbon spheres(HCSs) are reasonably introduced into the construction.Herein,a new design for novel HCSscombined CMs is proposed.Remarkably,the HCSs are linear carbon bubbles linked one-by-one, arranging into necklaces decorating on the graphene microfolds.Detailed thermal analysis confirm that high temperatures straighten the linked carbon bubbles into bamboo-like carbon nanofibers,evidently due to the attenuation of doping degree.Benefiting from the abundant active sites of carbon bubbles,the obtained CMs exhibit satisfactory electrocatalytic activity for oxygen reduction reactions.This work establishes a bridge to precisely control the synthesis of carbon-based hierarchical architectures. 展开更多
关键词 Hollow carbon spheres Microassemblies SPRAY-DRYING Carbon nanofibers Oxygen reduction reaction
在线阅读 下载PDF
Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses
9
作者 Qianbo Lu Qingxiong Xiao +6 位作者 Chengxiu Liu Yinan Wang Qixuan Zhu Manzhang Xu Xuewen Wang Xiaoxu Wang Wei Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期12-24,共13页
Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a s... Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices. 展开更多
关键词 inverse design optical cavity displacement transducer mixed-discrete variables optimization stratified system
在线阅读 下载PDF
Boosting MA-based two-dimensional Ruddlesden-Popper perovskite solar cells by incorporating a binary spacer 被引量:1
10
作者 Xue Dong Yinhao Tang +10 位作者 Yiqun Li Xin Li Yuzhen Zhao Wenqi Song Fangmin Wang Shudong Xu Yipeng Zhou Chenxin Ran Zongcheng Miao Lin Song Zhongbin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期348-356,I0008,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ... Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts. 展开更多
关键词 Perovskite solar cells Two-dimensional Ruddlesden-Popper perovskite Binary spacers Stability
在线阅读 下载PDF
Concurrent hetero-/homo-geneous electrocatalysts to bi-phasically mediate sulfur species for lithium-sulfur batteries
11
作者 Rui-Bo LingHu Jin-Xiu Chen +6 位作者 Jin-Hao Zhang Bo-Quan Li Qing-Shan Fu Gulnur Kalimuldina Geng-Zhi Sun Yunhu Han Long Kong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期663-668,I0016,共7页
Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batter... Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries. 展开更多
关键词 Lithium-sulfur batteries Electrocatalysis Lithium polysulfides Sulfur cathode Energy density
在线阅读 下载PDF
Lead‑Free Perovskite Materials for Solar Cells 被引量:7
12
作者 Minghao Wang Wei Wang +5 位作者 Ben Ma Wei Shen Lihui Liu Kun Cao Shufen Chen Wei Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期110-145,共36页
The toxicity issue of lead hinders large-scale commercial production and photovoltaic field application of lead halide perovskites.Some novel non-or low-toxic perovskite materials have been explored for development of... The toxicity issue of lead hinders large-scale commercial production and photovoltaic field application of lead halide perovskites.Some novel non-or low-toxic perovskite materials have been explored for development of environmentally friendly lead-free perovskite solar cells(PSCs).This review studies the substitution of equivalent/heterovalent metals for Pb based on first-principles calculation,summarizes the theoretical basis of lead-free perovskites,and screens out some promising lead-free candidates with suitable bandgap,optical,and electrical properties.Then,it reports notable achievements for the experimental studies of lead-free perovskites to date,including the crystal structure and material bandgap for all of lead-free materials and photovoltaic performance and stability for corresponding devices.The review finally discusses challenges facing the successful development and commercialization of lead-free PSCs and predicts the prospect of lead-free PSCs in the future. 展开更多
关键词 Solar cells PEROVSKITE LEAD-FREE First-principles calculation PHOTOVOLTAIC
在线阅读 下载PDF
Residual solvent extraction via chemical displacement for efficient and stable perovskite solar cells 被引量:3
13
作者 Min Fang Lei Tao +10 位作者 Wen Wu Qi Wei Yingdong Xia Ping Li Xueqin Ran Qi Zhong Guichuan Xing Lin Song Peter Müller-Buschbaum Hui Zhang Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期8-14,I0001,共8页
Solvent residue is inevitable to occur in solution processed thin films,but its influence on the thin film quality has not been identified and addressed to date.Methylammonium acetate(MAAc)ionic liquid has recently be... Solvent residue is inevitable to occur in solution processed thin films,but its influence on the thin film quality has not been identified and addressed to date.Methylammonium acetate(MAAc)ionic liquid has recently been realized as an environmentally friendly solvent for solution processed perovskites.The specific high viscosity,low vapor pressure and strong association with perovskite precursor of the MAAc solvent is a double-edged sword,which endowed an advantageously ambient air operational and anti-solvent free perovskite deposition,but the MAAc is likely to be retained within the film and bring in detrimental effects on device performance of the corresponding solar cells.Herein,we reported a novel route to eliminate the residual solvent via a facial hydrochloric acid(HCl)annealing post-treatment(HAAP).In particular,chemical displacement reaction between the incorporated HCl and residual MAAc can be initiated to form volatile MACl and HAc,efficiently extracting MAAc residue.In the meanwhile,the stimulated mass transport via downward penetration and upward escape can trigger secondary perovskite growth with enlarged grain size and smoothened surface,leading to reduced defect state and improved interfacial contact intimacy,and also partial chloride ions are able to enter the crystal lattice to stabilize perovskite phase structure.As a result,a champion efficiency up to20.78%originating from enhanced Voc was achieved,and more than 96%of its initial efficiency can be maintained after 1000 h shelf-storage. 展开更多
关键词 PEROVSKITE Solar cells Solvent residue Methylammonium acetate POST-TREATMENT Chemical displacement
在线阅读 下载PDF
Ambiently fostering solid electrolyte interphase for low-temperature lithium metal batteries 被引量:3
14
作者 Jia-Yue Duan Jin-Xiu Chen +7 位作者 Fang-Fang Wang Jin-Hao Zhang Xiao-Zhong Fan Liping Wang Yingze Song Wei Xia Yusheng Zhao Long Kong 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期473-478,I0012,共7页
Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.U... Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design. 展开更多
关键词 Li matel batteries Ambiently fostering SEI Charge transfer impedance Low temperature kinetics
在线阅读 下载PDF
Energy conversion materials for the space solar power station 被引量:2
15
作者 任晓娜 葛昌纯 +6 位作者 陈志培 伊凡 涂用广 张迎春 王立 刘自立 关怡秋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期124-131,共8页
Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on ... Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on the SSPS have been proposed and conducted,it is still not realized.The reason why SSPS is still an idea is not only because it is a giant and complex project,but also due to the requirement for various excellent space materials.Among the diverse required materials,we believe energy materials are the most important.Herein,we review the space energy conversion materials for the SSPS. 展开更多
关键词 space solar power station photovoltaic cell thermoelectric materials LASERS
在线阅读 下载PDF
Mesh-like vertical structures enable both high areal capacity and excellent rate capability 被引量:1
16
作者 Ruyi Chen Jialu Xue +10 位作者 Yujiao Gong Chenyang Yu Zengyu Hui Hai Xu Yue Sun Xi Zhao Jianing An Jinyuan Zhou Qiang Chen Gengzhi Sun Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期226-233,I0008,共9页
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vert... In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm^(-2) and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm^(-2) but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm^(-2);the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm^(-2)(246.9 mAh g^(-1)) at 3 mA cm^(-2) and outstanding rate performance with 84.7% retention at 30 mA cm^(-2),suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm^(-2) at the power density of 2.14 mW cm^(-2) with excellent electrochemical cycling stability. 展开更多
关键词 Mesh-like structure Ultrahigh areal capacity Excellent rate capability Hybrid supercapacitors Wearable energy storage
在线阅读 下载PDF
Fluorine substitution position effects on spiro(fluorene-9,9’-xanthene) cored hole transporting materials for high-performance planar perovskite solar cells 被引量:1
17
作者 Zhaoning Li Yikai Yun +4 位作者 Hongyan Huang Zhucheng Ding Xuewei Li Baomin Zhao Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期341-350,I0008,共11页
Fluorine substitution in molecular design has become an effective strategy for improving the overall performance of organic photovoltaics.In this study,three low-cost small molecules of spiro-linked hole transporting ... Fluorine substitution in molecular design has become an effective strategy for improving the overall performance of organic photovoltaics.In this study,three low-cost small molecules of spiro-linked hole transporting materials(SFX-O-2 F,SFX-m-2 F,and SFX-p-2 F) endowed with two-armed t rip he ny la mine moieties were synthesized via tuning of the fluorine substitution position,and they were employed for use in highly efficient perovskite solar cells(PSCs).Despite the fluorine substitution position playing a negligible role in the optical and electrochemical properties of the resulting small molecules,the photovoltaic performance thereof was observed to vary significantly.The planar n-i-p PSCs based on SFX-m-2 F demonstrated superior performance(18.86%) when compared to that of the corresponding SFX-o-2 F(9.7%) and SFX-p-2 F(16.33%) under 100 mW cm^(-2) AM1.5 G solar illumination,which is competitive with the performance of the benchmark spiro-OMeTAD-based device(18.98%).Moreover,the SFX-m-2 Fbased PSCs were observed to be more stable than the spiro-OMeTAD-based devices under ambient conditions.The improved performance of SFX-m-2 F is primarily associated with improved morphology,more efficient hole transport,and extraction characteristics at the perovskite/HTM interface.This work demonstrated the application of fluorination engineering to the tuning of material film morphology and charge transfer properties,showing the promising potential of fluorinated SM-HTMs for the construction of low-cost,high-efficiency PSCs. 展开更多
关键词 Fluorine substitution position effects Hole-transporting material Perovskite solar cell Planar n-i-p PSCs
在线阅读 下载PDF
Defect suppression and energy level alignment in formamidinium-based perovskite solar cells 被引量:1
18
作者 Yi Wang Xiaobing Wang +9 位作者 Chenhui Wang Renying Cheng Lanxin Zhao Xu Wang Xuewen Zhang Jingzhi Shang Huang Zhang Lichen Zhao Yongguang Tu Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期65-72,共8页
The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase tr... The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase transition and defects-induced non-ideal interfacial recombination, which significantly induces energy loss and hinders the improvement of device performance. Herein, we employed 4-fluorophenylmethylammonium iodide(F-PMAI) to modulate surface structure and energy level alignment of the FA-based perovskite films. The superior optoelectronic films were obtained with reduced trap density, pure α-phase FAPbI_(3) and favorable energy band bending. The lifetime of photogenerated charge carriers increased from 489.3 ns to 1010.6 ns, and a more “p-type” perovskite film was obtained by the post-treatment with F-PMAI. Following this strategy, we demonstrated an improved power conversion efficiency of 22.59% for the FA-based PSCs with an open-circuit voltage loss of 399 m V. 展开更多
关键词 Perovskite solar cells Defect suppression Energy level alignment Phase transition 4-Fluorophenylmethylammonium iodide
在线阅读 下载PDF
Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells
19
作者 Weiyin Gao He Dong +12 位作者 Nan Sun Lingfeng Chao Wei Hui Qi Wei Hai Li Yingdong Xia Xingyu Gao Guichuan Xing Zhongbin Wu Lin Song Peter Müller-Buschbaum Chenxin Ran Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期789-796,共8页
Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial cont... Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial contact between commonly used hole transport layer(i.e., poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate), PEDOT:PSS) and FASnI_(3) film, it is still challenging to effectively extract holes at the interface. Owing to the p-type nature of Sn-based perovskites, the efficient hole extraction is of particular significance to improve the PCE of their solar cells. In this work, for the first time, the role of chiral cations, a-methylbenzylamine(S-/R-/rac-MBA), in promoting hole transportation of FASnI_(3)-based PSCs is demonstrated. The introduction of MBAs is found to form 2D/3D film with lowdimensional structures locating at PEDOT:PSS/FASnI_(3) interface, which facilitates the energy level alignment and efficient charge transfer at the interface. Importantly, chiral-induced spin selectivity(CISS)effect of R-MBA_(2)SnI_(4)induced by chiral R-MBA cation is found to further assist the specific interfacial transport of accumulated holes. As a result, R-MBA-based PSCs achieve decent PCE of 10.73% with much suppressed hysteresis and enhanced device stability. This work opens up a new strategy to efficiently promote the interfacial extraction of accumulated charges in working PSCs. 展开更多
关键词 Tin perovskite Chiral cation 2D/3D structure Interfacial charge extraction Solar cells
在线阅读 下载PDF
Tuning Isomerism Effect in Organic Bulk Additives Enables Efficient and Stable Perovskite Solar Cells
20
作者 Qi Zhang Qiangqiang Zhao +9 位作者 Han Wang Yiguo Yao Lei Li Yulin Wei Ruida Xu Chenyang Zhang Erik O.Shalenov Yongguang Tu Kai Wang Mingjia Xiao 《Nano-Micro Letters》 2025年第5期193-205,共13页
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonra... Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses.However,how these groups synergistically affect the enhancement beyond passivation is still unclear.Specifically,isomeric molecules with different substitution patterns or molecular shapes remain elusive in designing new organic additives.Here,we report two isomeric carbazolyl bisphosphonate additives,2,7-Cz BP and 3,6-Cz BP.The isomerism effect on passivation and charge transport process was studied.The two molecules have similar passivation effects through multiple interactions,e.g.,P=O···Pb,P=O···H–N and N–H···I.2,7-CzBP can further bridge the perovskite crystallites to facilitates charge transport.Power conversion efficiencies(PCEs)of 25.88%and 21.04%were achieved for 0.09 cm^(2)devices and 14 cm^(2)modules after 2,7-Cz BP treatment,respectively.The devices exhibited enhanced operational stability maintaining 95%of initial PCE after 1000 h of continuous maximum power point tracking.This study of isomerism effect hints at the importance of tuning substitution positions and molecular shapes for organic additives,which paves the way for innovation of next-generation multifunctional aromatic additives. 展开更多
关键词 Organic additives Molecular simulation Perovskite solar cells Passivation Isomeric effect
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部