In this study,based on a closed bomb test combined with computational fluid dynamics,a structural finite element method,and an acoustic boundary element method,a fluid-solid acoustic one-way coupling calculation model...In this study,based on a closed bomb test combined with computational fluid dynamics,a structural finite element method,and an acoustic boundary element method,a fluid-solid acoustic one-way coupling calculation model is established for the combustion process of energetic materials in a closed bomb,and the effectiveness of the model is verified by experiments.It is found that the maximum peak sound pressure increases exponentially with an increase in loading doses or gas pressure.However,a change in the combustion coefficient of the energetic materials has little effect on the noise generated during the combustion process in the closed bomb.When the combustion coefficient is reduced by a multiple of 16,the maximum transient sound pressure is reduced by 1.79 dB,and the sound pressure level in the frequency band is reduced by 1.75 dB.With an increase in shell thickness,the combustion noise of the energetic materials in the closed bomb decreases,and the reduction range of the combustion noise increases with the increase in shell thickness.展开更多
The detonation wave-aiming warhead can effectively enhance the lethality efficiency. In the past, rules for casing rupture and velocity distribution under asymmetrical initiations were not adequately investigated. In ...The detonation wave-aiming warhead can effectively enhance the lethality efficiency. In the past, rules for casing rupture and velocity distribution under asymmetrical initiations were not adequately investigated. In this study, X-ray photography and numerical modelling are used to examine the casing expansions under centre point, asymmetrical one-point, and asymmetrical two-point(with central angles of 45° and 90°) initiations. The results indicate that early casing ruptures are caused by local high pressures, induced by the initiation, detonation wave interaction, and Mach wave onset. The fragment shapes are controlled by the impact angle of the detonation wave. The fragment velocity distributions differ under different initiation types, and the end rarefaction waves can affect the velocity distribution.This study can serve as a reference for the design and optimization of high-efficiency warheads.展开更多
文摘In this study,based on a closed bomb test combined with computational fluid dynamics,a structural finite element method,and an acoustic boundary element method,a fluid-solid acoustic one-way coupling calculation model is established for the combustion process of energetic materials in a closed bomb,and the effectiveness of the model is verified by experiments.It is found that the maximum peak sound pressure increases exponentially with an increase in loading doses or gas pressure.However,a change in the combustion coefficient of the energetic materials has little effect on the noise generated during the combustion process in the closed bomb.When the combustion coefficient is reduced by a multiple of 16,the maximum transient sound pressure is reduced by 1.79 dB,and the sound pressure level in the frequency band is reduced by 1.75 dB.With an increase in shell thickness,the combustion noise of the energetic materials in the closed bomb decreases,and the reduction range of the combustion noise increases with the increase in shell thickness.
基金funded by the National Natural Science Foundation of China [Grant No. 12002178]opening project of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) [Grant No. KFJJ22-17M]the Fundamental Research Funds for Central Universities
文摘The detonation wave-aiming warhead can effectively enhance the lethality efficiency. In the past, rules for casing rupture and velocity distribution under asymmetrical initiations were not adequately investigated. In this study, X-ray photography and numerical modelling are used to examine the casing expansions under centre point, asymmetrical one-point, and asymmetrical two-point(with central angles of 45° and 90°) initiations. The results indicate that early casing ruptures are caused by local high pressures, induced by the initiation, detonation wave interaction, and Mach wave onset. The fragment shapes are controlled by the impact angle of the detonation wave. The fragment velocity distributions differ under different initiation types, and the end rarefaction waves can affect the velocity distribution.This study can serve as a reference for the design and optimization of high-efficiency warheads.