期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of ceramsite on methane and hydrogen sulphide productions from macroalgae biomass 被引量:1
1
作者 孙梦婷 付善飞 +2 位作者 贺帅 范晓蕾 郭荣波 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1076-1083,共8页
The easy acidification and high hydrogen sulfide (H2S) production during anaerobic digestion of macroalgae limited its application in biomethane production. In order to investigate the effects of ceramsite on methan... The easy acidification and high hydrogen sulfide (H2S) production during anaerobic digestion of macroalgae limited its application in biomethane production. In order to investigate the effects of ceramsite on methane and HzS productions during anaerobic digestion of macroalgae, batch experiments ofMacrocystis pyrifera were carried out. Four groups named C0, C1, C2 and C3 added with 0, 1.5, 3.0 and 4.5 g/g substrate of ceramsite, respectively, were studied and compared. The highest cumulative methane yield of 286.3 mL/g substrate is obtained in C2, which is 40.11% higher than that of CO. The cumulative HzS yields of C1, C2 and C3 are 32.67%, 44.66% and 53.21% lower than that of CO, respectively. Results indicate that ceramsite addition permits higher methane yields, shorter lag-phase time and lower HzS yields during anaerobic digestion of Macrocystispyrifera. 展开更多
关键词 anaerobic digestion MACROALGAE CERAMSITE methane production hydrogen sulfide
在线阅读 下载PDF
Simultaneous production of hydrogen and volatile fatty acids from anaerobic digestion of Macrocystis pyrifera biomass residues
2
作者 ZHAO Xiao-xian FAN Xiao-lei +4 位作者 XUE Zhi-xin YANG Zhi-man YUAN Xian-zheng QIU Yan-ling GUO Rong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1281-1287,共7页
The Macrocystis pyrifera biomass residues(MPBRs) after extraction of algin could be applied in anaerobic fermentation. The effects of different pretreatment conditions, substrate concentrations and initial pH values o... The Macrocystis pyrifera biomass residues(MPBRs) after extraction of algin could be applied in anaerobic fermentation. The effects of different pretreatment conditions, substrate concentrations and initial pH values on hydrogen and volatile fatty acid(VFA) production during the anaerobic fermentation of MPBRs were evaluated. The optimal pretreatment conditions, substrate concentration, initial pH values were determined as thermo-alkaline pretreatment at 100 °C with 0.1 mol/L NaOH, 40 g/L and 7.0, respectively. Under these conditions, the maximum hydrogen production was 11.38 mL/g(volatile solids, VS), which was approximately 23 times higher than that of untreated MPBRs. Furthermore, the maximum total volatile fatty acid(TVFA) yield was found to be 0.055 g/g(VS) and the VFA mainly consisted of acetic and butyric acids. The results indicate that the yield of TVFA is positively correlated with hydrogen production, and the MPBRs could produce hydrogen and TVFA simultaneously. In addition, thermo-alkaline pretreatment is proven to be the best method for hydrogen and VFA production. 展开更多
关键词 Macrocystis pyrifera BIOMASS RESIDUES PRETREATMENT FERMENTATION HYDROGEN
在线阅读 下载PDF
A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation 被引量:9
3
作者 蒋海明 罗生军 +2 位作者 师晓爽 戴萌 郭荣波 《Journal of Central South University》 SCIE EI CAS 2013年第2期488-494,共7页
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ... A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass. 展开更多
关键词 wastewater treatment microbial fuel cell PHOTOBIOREACTOR MICROALGAE BIOELECTRICITY
在线阅读 下载PDF
基于微波真空干燥的圆竹材干缩性研究 被引量:4
4
作者 吕黄飞 刘贤淼 +2 位作者 方长华 张波 费本华 《林产工业》 北大核心 2018年第2期8-11,共4页
圆竹材的合理干燥是决定竹材利用质量优劣和寿命的重要环节,圆竹材的微波真空干燥,是一项探索性研究课题。笔者采用微波真空干燥方法,在一定的干燥基准条件下,依据含水率变化曲线,将干燥过程分为加速、恒速和减速干燥三个阶段。研究结... 圆竹材的合理干燥是决定竹材利用质量优劣和寿命的重要环节,圆竹材的微波真空干燥,是一项探索性研究课题。笔者采用微波真空干燥方法,在一定的干燥基准条件下,依据含水率变化曲线,将干燥过程分为加速、恒速和减速干燥三个阶段。研究结果表明,干燥初期随着温度逐渐上升,水分蒸发量逐渐增加,中期恒速干燥阶段,大量液态水转化为水蒸气排出,持续时间长,后期减速干燥阶段含水率较低,主要是结合水的蒸发,含水率变化很小,三个阶段所占干燥时间分别约为20、90 min和40 min;沿壁厚方向干缩率不明显,沿着竹竿高度方向由下向上,干缩率逐渐增大。 展开更多
关键词 圆竹材 微波真空 干燥 干缩
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部