By numerically solving the two-dimensional(2D)time-dependent Schrödinger equation(TDSE),we present photoelectron momentum distributions(PMDs)and photoelectron angular distributions(PADs)of symmetric(H_(2)^(+))and...By numerically solving the two-dimensional(2D)time-dependent Schrödinger equation(TDSE),we present photoelectron momentum distributions(PMDs)and photoelectron angular distributions(PADs)of symmetric(H_(2)^(+))and asymmetric(HeH^(2+))molecular ions in circularly polarized(CP)laser pulses.By adjusting the laser wavelength,two circumstances of resonance excitation and direct ionization were considered.The ionization mechanism of the resonance excitation was mainly investigated.The results show that the PMDs of H_(2)^(+) and HeH^(2+) in the y-direction gradually increase with increasing intensity,and the number of PMDs lobes is in good agreement with the results predicted by the ultrafast ionization model.In the resonance excitation scenario,the PMDs of are dominated by two-photon ionization,whereas the PMDs of HeH_(2)^(+) are dominated by three-photon ionization.Furthermore,the PMDs of HeH^(2+)are stronger in the resonance excitation scenario than those of H_(2)^(+),which can be explained by the time-dependent population of electrons.In addition,the molecular structure is clearly imprinted onto the PMDs.展开更多
The state selection and beam focus of linear triatomic molecules (OCS, HCN, ClCN, BrCN and ICN) with doubling states in a hexapole electric field have been numerically realized. The method is based on a quantum mech...The state selection and beam focus of linear triatomic molecules (OCS, HCN, ClCN, BrCN and ICN) with doubling states in a hexapole electric field have been numerically realized. The method is based on a quantum mechanical treatment of the molecular Stark energy and a classical mechanical treatment for the molecular trajectory in the field. In linear molecules with doubling states, the second-order Stark effect can be neglected and the doubling states have the same value of J and M. The influences of the molecular properties, state energies, and the apparatus parameters such as molecular beam temperature and length of the hexapole, on the role of state selection and focus have been discussed. The method established here can be taken as a guide for hexapole experiment of orientation of polar molecules.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic st...Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.展开更多
Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses ...Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses bysolving the time-dependent Schrodinger equations based on the single-active-electron approximation frames.Results showthat high-frequency photons lead to photoelectron diffraction patterns,indicating molecular orbitals.These diffractionpatterns can be illustrated by the ultrafast photoionization models.However,for the driving pulses with 30 nm,a deviationbetween MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because theCoulomb effect strongly influences the molecular photoionization.Meanwhile,the MF-PMDs rotate in the same directionas the helicity of driving laser pulses.Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superpositionof those in the parallel and perpendicular linearly polarized cases.The simulations efficiently visualize molecularorbital geometries and structures by ultrafast photoelectron imaging.Furthermore,we determine the contribution of HOMOand HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
Taking an image of their structure and a movie of their dynamics of small quantum systems have always been a dream of physicists and chemists. Laser-induced Coulomb explosion imaging(CEI) provides a great opportunity ...Taking an image of their structure and a movie of their dynamics of small quantum systems have always been a dream of physicists and chemists. Laser-induced Coulomb explosion imaging(CEI) provides a great opportunity to make this dream a reality for small molecules or their aggregation — clusters. The method is unique for identifying the atomic locations with angstrom spatial resolution and capturing the structural evolution with a femtosecond time scale, in particular for imaging transient state products. This review summarizes the determination of three-dimensional equilibrium geometry of molecules and molecular cluster system through the reconstruction from the fragments momenta, and also shows that the dissociation dynamics on the complex potential energy surface can be tracked in real-time with the ultrafast CEI(UCEI).Furthermore, the detailed measurement and analysis procedures of the CEI, theoretical methods, exemplary results, and future perspectives of the technique are described.展开更多
The ultrafast photoionization dynamics of N_(2) molecules by x-ray/XUV laser pulses is investigated.The molecular frame photoelectron momentum distributions(MF-PMDs) and the molecular frame photoelectron angular distr...The ultrafast photoionization dynamics of N_(2) molecules by x-ray/XUV laser pulses is investigated.The molecular frame photoelectron momentum distributions(MF-PMDs) and the molecular frame photoelectron angular distributions(MF-PADs) are obtained by numerically solving 2D time-dependent Schrodinger equations within the single-electron approximation(SEA) frame.The results show that the molecular photoionization diffraction appears in 5 nm laser fields.However,when the laser wavelength is 30 nm,the molecular photoionization diffraction disappears and the MF-PMDs show four-lobe pattern.The ultrafast photoionization model can be employed to describe the MF-PMDs and MF-PADs of N_(2) molecules.展开更多
Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecul...Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer(ESIPT) for the 4-N,N-(diethylamino)-2-hydroxybenzaldehyde(DEAHB). The structures of DEAHB and its hydrogenbonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future.展开更多
Imaging the charge distributions and structures of molecules and clusters will promote the understanding of the dynamics of the quantum system.Here,we report a method by using an Ar atom as a tip to probe the charge d...Imaging the charge distributions and structures of molecules and clusters will promote the understanding of the dynamics of the quantum system.Here,we report a method by using an Ar atom as a tip to probe the charge distributions of benzene(Bz)cations in gas phase.Remarkably,the measured charge distributions of Bz^(+)(δ_(H)=0.204,δ_(C)=-0.037)and Bz^(2+)(δ_(H)=0.248,δ_(C)=0.0853)agree well with the calculated Mulliken distributions,and the structures of Bz2 is reconstructed by using the measured charge distributions.The structures of two Bz2isomers(T-shaped and PD isomers)can be resolved from the measured inter-molecular potential V(R)between two Bz ions,and the structures of Bz dimer agree well with the theoretical predictions.展开更多
We first confirm an idea obtained from first-principles calculations,which is in line with symmetry theory:Although superatomic molecular orbitals(SAMOs) can be classified according to their angular momentum similar t...We first confirm an idea obtained from first-principles calculations,which is in line with symmetry theory:Although superatomic molecular orbitals(SAMOs) can be classified according to their angular momentum similar to atomic orbitals,SAMOs with the same angular momentum split due to the point group symmetry of superatoms.Based on this idea,we develop a method to quantitatively modulate the splitting spacing of molecular orbitals in a superatom by changing its structural symmetry or by altering geometric parameters with the same symmetry through expansion and compression processes.Moreover,the modulation of the position crossover is achieved between the lowest unoccupied molecular orbital and the highest occupied molecular orbital originating from the splitting of different angular momenta,leading to an effective reduction in system energy.This phenomenon is in line with the implication of the Jahn–Teller effect.This work provides insights into understanding and regulating the electronic structures of superatoms.展开更多
We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp a...We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.展开更多
The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel rati...The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.展开更多
The photoionization of a hydrogen atom from its ground state with ultra-fast chirped pulses is investigated by numerically solving the time-dependent Schrodinger equation within length,velocity,and Kramers-Henneberger...The photoionization of a hydrogen atom from its ground state with ultra-fast chirped pulses is investigated by numerically solving the time-dependent Schrodinger equation within length,velocity,and Kramers-Henneberger gauges.Converged results for all gauges for chirp-free pulses agree with the prediction of dynamic interference for ground state hydrogen atoms predicted recently by Jiang and Burgdorfer[Opt.Express 26,19921(2018)].In addition,we investigated photoelectron spectra of hydrogen atoms by chirped laser pulses,and showed that dynamic interference effect will be weaken for pulses with increasing linear chirp.Our numerical results can be understood and discussed in terms of an interplay of photoelectron wavepackets from first and second halves of laser enevelop,including the ac Stark energy level shift of the photoelectron final state and atomic stabilization effect at ultra-high intensities.展开更多
This paper theoretically investigates the high-order harmonic generation cutoff extension using intense few-cycle linearly chirped laser pulses. It shows that the cutoff of the harmonic can be extended remarkably by o...This paper theoretically investigates the high-order harmonic generation cutoff extension using intense few-cycle linearly chirped laser pulses. It shows that the cutoff of the harmonic can be extended remarkably by optimising the chirping parameters. The time-frequency characteristics of high-order harmonics with different chirping parameters are analysed by means of wavelet transform of the dipole acceleration. It also gives out the classical three-step model pictures of electron. By superposing a properly selected range of the harmonic spectrum, it obtains an isolated 65as pulse.展开更多
We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plate...We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plateau in the harmonic spectrum is largely extended compared with the case that the atom is initially in the ground state. The physics of the extension of the high-order harmonic plateau can be interpreted by the spatial structure of the atomic initial wave packet. We can optimize the generation of high-order harmonics by substituting the excited state for a particular coherent superposition of some highly excited states to form a spatially localized excited wave packet.展开更多
5f-elements encaged in a gold superatomic cluster are capable of giving rise to unique optical properties due to their hyperactive valence electrons and great radial components of 5f/6d orbitals. Herein, we review our...5f-elements encaged in a gold superatomic cluster are capable of giving rise to unique optical properties due to their hyperactive valence electrons and great radial components of 5f/6d orbitals. Herein, we review our first-principles studies on electronic structures and spectroscopic properties of a series of actinide-embedded gold superatomic clusters with different dimensions. The three-dimensional(3D) and two-dimensional(2D) superatom clusters possess the 18-electron configuration of 1S21P61D10 and 10-electron configuration of 1S21P41D4, respectively. Importantly, their electronic absorption spectra can also be effectively explained by the superatom orbitals. Specifically, the charge transfer(CT) transitions involved in surface-enhance Raman spectroscopy(SERS) spectra for 3D and 2D structures are both from the filled 1D orbitals, providing the enhancement factors of the order of ~ 10^4 at 488 nm and ~ 10^5 at 456 nm, respectively. This work implies that the superatomic orbital transitions involved in 5f-elements can not only lead to a remarkable spectroscopic performance, but also a new direction for optical design in the future.展开更多
We extend the Hamiltonian method of the full-core plus correlation (FCPC) by minimizing the expectation value to calculate the non-relativistic energies and the wave functions of ls22s states for the lithium-like sy...We extend the Hamiltonian method of the full-core plus correlation (FCPC) by minimizing the expectation value to calculate the non-relativistic energies and the wave functions of ls22s states for the lithium-like systems from Z = 41 to 50. The mass-polarization and the relativistic corrections including the kinetic-energy correction, the Darwin term, the electron-electron contact term, and the orbit-orbit interaction are calculated perturbatively as first-order correction. The contribution from quantum electrodynamic (QED) is also explored by using the effective nuclear charge formula. The ionization potential and term energies of the ground states 1 s22s are derived and compared with other theoretical calculation results. It is shown that the FCPC methods are also effective for theoretical calculation of the ionic structure for high nuclear ion of lithium-like systems.展开更多
We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser...We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).展开更多
基金Project supported by the Natural Science Foundation of Jilin Province(Grant No.20220101010JC)the National Natural Science Foundation of China(Grant No.12074146)。
文摘By numerically solving the two-dimensional(2D)time-dependent Schrödinger equation(TDSE),we present photoelectron momentum distributions(PMDs)and photoelectron angular distributions(PADs)of symmetric(H_(2)^(+))and asymmetric(HeH^(2+))molecular ions in circularly polarized(CP)laser pulses.By adjusting the laser wavelength,two circumstances of resonance excitation and direct ionization were considered.The ionization mechanism of the resonance excitation was mainly investigated.The results show that the PMDs of H_(2)^(+) and HeH^(2+) in the y-direction gradually increase with increasing intensity,and the number of PMDs lobes is in good agreement with the results predicted by the ultrafast ionization model.In the resonance excitation scenario,the PMDs of are dominated by two-photon ionization,whereas the PMDs of HeH_(2)^(+) are dominated by three-photon ionization.Furthermore,the PMDs of HeH^(2+)are stronger in the resonance excitation scenario than those of H_(2)^(+),which can be explained by the time-dependent population of electrons.In addition,the molecular structure is clearly imprinted onto the PMDs.
基金Supported by the National Natural Science Foundation of China and the Specialized Research Fund for the Doctoral Programme of Higher Education of China.
文摘The state selection and beam focus of linear triatomic molecules (OCS, HCN, ClCN, BrCN and ICN) with doubling states in a hexapole electric field have been numerically realized. The method is based on a quantum mechanical treatment of the molecular Stark energy and a classical mechanical treatment for the molecular trajectory in the field. In linear molecules with doubling states, the second-order Stark effect can be neglected and the doubling states have the same value of J and M. The influences of the molecular properties, state energies, and the apparatus parameters such as molecular beam temperature and length of the hexapole, on the role of state selection and focus have been discussed. The method established here can be taken as a guide for hexapole experiment of orientation of polar molecules.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274178 and 12174148)Support of High Performance Computing Center of Jilin Universitythe high-performance computing cluster Tiger@IAMP。
文摘Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974007,12074146,12074142,61575077,12374265,11947243,91850114,and 11774131)the Natural Science Foundation of Jilin Province of China(Grant No.20220101016JC).
文摘Molecular-frame photoelectron momentum distributions(MF-PMDs)have been studied for imaging molecular structures.We investigate the MF-PMDs of CO_(2)molecules exposed to circularly polarized(CP)attosecond laser pulses bysolving the time-dependent Schrodinger equations based on the single-active-electron approximation frames.Results showthat high-frequency photons lead to photoelectron diffraction patterns,indicating molecular orbitals.These diffractionpatterns can be illustrated by the ultrafast photoionization models.However,for the driving pulses with 30 nm,a deviationbetween MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because theCoulomb effect strongly influences the molecular photoionization.Meanwhile,the MF-PMDs rotate in the same directionas the helicity of driving laser pulses.Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superpositionof those in the parallel and perpendicular linearly polarized cases.The simulations efficiently visualize molecularorbital geometries and structures by ultrafast photoelectron imaging.Furthermore,we determine the contribution of HOMOand HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307700)the National Natural Science Foundation of China (Grant Nos. 12004133, 12074143, 12134005, and 11904210)China Postdoctoral Science Foundation (Grant No. 2021M691220)。
文摘Taking an image of their structure and a movie of their dynamics of small quantum systems have always been a dream of physicists and chemists. Laser-induced Coulomb explosion imaging(CEI) provides a great opportunity to make this dream a reality for small molecules or their aggregation — clusters. The method is unique for identifying the atomic locations with angstrom spatial resolution and capturing the structural evolution with a femtosecond time scale, in particular for imaging transient state products. This review summarizes the determination of three-dimensional equilibrium geometry of molecules and molecular cluster system through the reconstruction from the fragments momenta, and also shows that the dissociation dynamics on the complex potential energy surface can be tracked in real-time with the ultrafast CEI(UCEI).Furthermore, the detailed measurement and analysis procedures of the CEI, theoretical methods, exemplary results, and future perspectives of the technique are described.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074146,11974007,12074142,11904122,91850114,and 11774131)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)。
文摘The ultrafast photoionization dynamics of N_(2) molecules by x-ray/XUV laser pulses is investigated.The molecular frame photoelectron momentum distributions(MF-PMDs) and the molecular frame photoelectron angular distributions(MF-PADs) are obtained by numerically solving 2D time-dependent Schrodinger equations within the single-electron approximation(SEA) frame.The results show that the molecular photoionization diffraction appears in 5 nm laser fields.However,when the laser wavelength is 30 nm,the molecular photoionization diffraction disappears and the MF-PMDs show four-lobe pattern.The ultrafast photoionization model can be employed to describe the MF-PMDs and MF-PADs of N_(2) molecules.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922204)the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer(ESIPT) for the 4-N,N-(diethylamino)-2-hydroxybenzaldehyde(DEAHB). The structures of DEAHB and its hydrogenbonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12074143,11974272,11774281,and 12134005)the Science Challenge Project(Grant No.TZ2018005)。
文摘Imaging the charge distributions and structures of molecules and clusters will promote the understanding of the dynamics of the quantum system.Here,we report a method by using an Ar atom as a tip to probe the charge distributions of benzene(Bz)cations in gas phase.Remarkably,the measured charge distributions of Bz^(+)(δ_(H)=0.204,δ_(C)=-0.037)and Bz^(2+)(δ_(H)=0.248,δ_(C)=0.0853)agree well with the calculated Mulliken distributions,and the structures of Bz2 is reconstructed by using the measured charge distributions.The structures of two Bz2isomers(T-shaped and PD isomers)can be resolved from the measured inter-molecular potential V(R)between two Bz ions,and the structures of Bz dimer agree well with the theoretical predictions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974136 and 11674123)。
文摘We first confirm an idea obtained from first-principles calculations,which is in line with symmetry theory:Although superatomic molecular orbitals(SAMOs) can be classified according to their angular momentum similar to atomic orbitals,SAMOs with the same angular momentum split due to the point group symmetry of superatoms.Based on this idea,we develop a method to quantitatively modulate the splitting spacing of molecular orbitals in a superatom by changing its structural symmetry or by altering geometric parameters with the same symmetry through expansion and compression processes.Moreover,the modulation of the position crossover is achieved between the lowest unoccupied molecular orbital and the highest occupied molecular orbital originating from the splitting of different angular momenta,leading to an effective reduction in system energy.This phenomenon is in line with the implication of the Jahn–Teller effect.This work provides insights into understanding and regulating the electronic structures of superatoms.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20230101014JC)the National Natural Science Foundation of China(Grant No.12374265)。
文摘We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.
文摘The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774131 and 91850114)
文摘The photoionization of a hydrogen atom from its ground state with ultra-fast chirped pulses is investigated by numerically solving the time-dependent Schrodinger equation within length,velocity,and Kramers-Henneberger gauges.Converged results for all gauges for chirp-free pulses agree with the prediction of dynamic interference for ground state hydrogen atoms predicted recently by Jiang and Burgdorfer[Opt.Express 26,19921(2018)].In addition,we investigated photoelectron spectra of hydrogen atoms by chirped laser pulses,and showed that dynamic interference effect will be weaken for pulses with increasing linear chirp.Our numerical results can be understood and discussed in terms of an interplay of photoelectron wavepackets from first and second halves of laser enevelop,including the ac Stark energy level shift of the photoelectron final state and atomic stabilization effect at ultra-high intensities.
基金supported by the National Natural Science Foundation of China (Grant No.10974068)
文摘This paper theoretically investigates the high-order harmonic generation cutoff extension using intense few-cycle linearly chirped laser pulses. It shows that the cutoff of the harmonic can be extended remarkably by optimising the chirping parameters. The time-frequency characteristics of high-order harmonics with different chirping parameters are analysed by means of wavelet transform of the dipole acceleration. It also gives out the classical three-step model pictures of electron. By superposing a properly selected range of the harmonic spectrum, it obtains an isolated 65as pulse.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10474028 and 10604021.
文摘We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plateau in the harmonic spectrum is largely extended compared with the case that the atom is initially in the ground state. The physics of the extension of the high-order harmonic plateau can be interpreted by the spatial structure of the atomic initial wave packet. We can optimize the generation of high-order harmonics by substituting the excited state for a particular coherent superposition of some highly excited states to form a spatially localized excited wave packet.
基金supported by the National Natural Science Foundation of China(Grant No.11374004)the Science and Technology Development Program of Jilin Province,China(Grant No.20150519021JH)+1 种基金the Fok Ying Tung Education Foundation,China(Grant No.142001)the Support from the High Performance Computing Center(HPCC)of Jilin University,China
文摘5f-elements encaged in a gold superatomic cluster are capable of giving rise to unique optical properties due to their hyperactive valence electrons and great radial components of 5f/6d orbitals. Herein, we review our first-principles studies on electronic structures and spectroscopic properties of a series of actinide-embedded gold superatomic clusters with different dimensions. The three-dimensional(3D) and two-dimensional(2D) superatom clusters possess the 18-electron configuration of 1S21P61D10 and 10-electron configuration of 1S21P41D4, respectively. Importantly, their electronic absorption spectra can also be effectively explained by the superatom orbitals. Specifically, the charge transfer(CT) transitions involved in surface-enhance Raman spectroscopy(SERS) spectra for 3D and 2D structures are both from the filled 1D orbitals, providing the enhancement factors of the order of ~ 10^4 at 488 nm and ~ 10^5 at 456 nm, respectively. This work implies that the superatomic orbital transitions involved in 5f-elements can not only lead to a remarkable spectroscopic performance, but also a new direction for optical design in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074102 and 11204118)
文摘We extend the Hamiltonian method of the full-core plus correlation (FCPC) by minimizing the expectation value to calculate the non-relativistic energies and the wave functions of ls22s states for the lithium-like systems from Z = 41 to 50. The mass-polarization and the relativistic corrections including the kinetic-energy correction, the Darwin term, the electron-electron contact term, and the orbit-orbit interaction are calculated perturbatively as first-order correction. The contribution from quantum electrodynamic (QED) is also explored by using the effective nuclear charge formula. The ionization potential and term energies of the ground states 1 s22s are derived and compared with other theoretical calculation results. It is shown that the FCPC methods are also effective for theoretical calculation of the ionic structure for high nuclear ion of lithium-like systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174108,11104108,and 11271158)
文摘We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).