In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid le...In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid lead-bismuth eutectic(LBE)and air at 350℃.The results show that all three steels tested in LBE are not subjected to evident degradation of tensile elongation to failure and strength compared to those tested in air,suggesting that LME does not occur regardless of the processing methods.The LPBF 316L steel exhibits the highest yield strength(420-435 MPa),followed by casting 316 L(~242 MPa)and PEP 316L(146-165 MPa).Ultimate tensile strength of three steels is comparable and ranges from 427 to 485 MPa.The PEP and casting 316L steels have similar total elongation to failure(i.e.,40.0%-43.8%),whereas this property decreases markedly to 18.6%-19.5% for the LPBF 316 L steel.The superior strength and relatively low ductility of the LPBF 316L steel can be attributed to nanosized dislocations trapped at cell structures which can produce a remarkable strengthening effect to the steel matrix.By contrast,due to massive residual micropores,the PEP 316L steel has the lowest strength.展开更多
基金Project(2024YFB4608600)supported by the National Key Research and Development Program of ChinaProjects(52271063,U21B2066,U24B2024)supported by the National Natural Science Foundation of China+3 种基金Project(JSGG20210713091539014)supported by the Shenzhen Science and Technology Innovation Commission Key Technical Project,ChinaProject(HNGD2025040)supported by the Overseas High-Level Talents Introduction of Henan Province,ChinaProject(240621041)supported by the Fundamental Research Funds of Henan Academy of Sciences,ChinaProject(20231120233925001)supported by Stabilization Support Program for Higher Education Institutions of Shenzhen,China。
文摘In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid lead-bismuth eutectic(LBE)and air at 350℃.The results show that all three steels tested in LBE are not subjected to evident degradation of tensile elongation to failure and strength compared to those tested in air,suggesting that LME does not occur regardless of the processing methods.The LPBF 316L steel exhibits the highest yield strength(420-435 MPa),followed by casting 316 L(~242 MPa)and PEP 316L(146-165 MPa).Ultimate tensile strength of three steels is comparable and ranges from 427 to 485 MPa.The PEP and casting 316L steels have similar total elongation to failure(i.e.,40.0%-43.8%),whereas this property decreases markedly to 18.6%-19.5% for the LPBF 316 L steel.The superior strength and relatively low ductility of the LPBF 316L steel can be attributed to nanosized dislocations trapped at cell structures which can produce a remarkable strengthening effect to the steel matrix.By contrast,due to massive residual micropores,the PEP 316L steel has the lowest strength.