The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decom...Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.展开更多
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu...Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.展开更多
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and...In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.展开更多
Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat trea...Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.展开更多
Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO_(2),a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structu...Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO_(2),a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structure,which has attracted significant attention due to its structural robustness and relatively high specific capacity.However,it has short cycle life and poor rate capability.To address these issues,Ti atoms,known for enhancing structural stability,and Cu atoms,which facilitate desodiation,were doped intoβ-NaMnO_(2) by first-principles calculation and crystal orbital Hamilton population(COHP)analysis.β-NaMn_(0.8)Ti_(0.1)Cu_(0.1)O_(2) exhibits a notable increase in reversible specific capacity and remarkable rate properties.Operating at a current density of 0.2C(1C=219 mA·g^(–1))and within a voltage range of 1.8–4.0 V,the modified material delivers an initial discharge capacity of 132 mAh·g^(–1).After charge/discharge testing at current densities of 0.2C,0.5C,1C,3C,and 0.2C,the material still maintains a capacity of 110 mA h·g^(–1).The doping of Ti atoms slows down the changes in the crystal structure,resulting in only minimal variation in the lattice constant c/a during the desodiation process.Mn and Cu engage in reversible redox reactions at voltages below 3.0 V and around 3.5 V,respectively.The extended plateau observed in the discharge curve below 3.0 V signifies that Mn significantly contributes to the overall battery capacity.This study provides insights into modifyingβ-NaMnO_(2) as a cathode material,offering experimental evidence and theoretical guidance for enhancing battery performance in Na-ion batteries.展开更多
The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it int...The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results.展开更多
Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suita...Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.展开更多
For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t...For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.展开更多
In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid le...In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid lead-bismuth eutectic(LBE)and air at 350℃.The results show that all three steels tested in LBE are not subjected to evident degradation of tensile elongation to failure and strength compared to those tested in air,suggesting that LME does not occur regardless of the processing methods.The LPBF 316L steel exhibits the highest yield strength(420-435 MPa),followed by casting 316 L(~242 MPa)and PEP 316L(146-165 MPa).Ultimate tensile strength of three steels is comparable and ranges from 427 to 485 MPa.The PEP and casting 316L steels have similar total elongation to failure(i.e.,40.0%-43.8%),whereas this property decreases markedly to 18.6%-19.5% for the LPBF 316 L steel.The superior strength and relatively low ductility of the LPBF 316L steel can be attributed to nanosized dislocations trapped at cell structures which can produce a remarkable strengthening effect to the steel matrix.By contrast,due to massive residual micropores,the PEP 316L steel has the lowest strength.展开更多
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succini...The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.展开更多
The paper studies the value of information in an investment problem,here,the information is assumed to be imperfect.The value of information depends on its structure which is characterized by the joint(or conditional)...The paper studies the value of information in an investment problem,here,the information is assumed to be imperfect.The value of information depends on its structure which is characterized by the joint(or conditional)probability matrix of information variable and state variable.we have defined some partial ordering over the matrices.our main results provide some sufficient conditions,which described by the partial ordering,for the value of information to increase.Applying these results,we have obtained some basic properties of the value of information.展开更多
Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced ...Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced here.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different com...Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different commu-nities in the relevant fields,particularly between nuclear physicists and astrophysicists,we have organized the Dialo-gue at the Dream Field(DDF2024).The participants explored topics of various fields such as pulsar astrophysics,transient phenomena,hadronic and nuclear matter,supra-nuclear matter with quark degree of freedom,numerical relativity.This involved discussions on the mechanisms,model constructions,observational impacts,and introduc-tions of new facilities.In-depth exchanges were carried out through invited talks and free discussions,as well as a visit to view the FAST telescope.展开更多
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were...In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease.展开更多
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ...Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.展开更多
Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RF...Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RFI)being the most common type,leading to a severe degradation in image quality.To address the above problem,numerous algorithms have been proposed.Although inpainting networks have achieved excellent results,their generalization is unclear.Whether they still work effectively in cross-sensor experiments needs fur⁃ther verification.Through the time-frequency analysis to interference signals,this work finds that interference holds domain invariant features between different sensors.Therefore,this work reconstructs the loss function and extracts the domain invariant features to improve its generalization.Ultimately,this work proposes a SAR RFI suppression method based on domain invariant features,and embeds the RFI suppression into SAR imaging pro⁃cess.Compared to traditional notch filtering methods,the proposed approach not only removes interference but also effectively preserves strong scattering targets.Compared to PISNet,our method can extract domain invariant features and hold better generalization ability,and even in the cross-sensor experiments,our method can still achieve excellent results.In cross-sensor experiments,training data and testing data come from different radar platforms with different parameters,so cross-sensor experiments can provide evidence for the generalization.展开更多
Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functio...Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functions based on the transition between amorphous and crystalline states.However,the inherent limitation in tunable states imposes constraints on the multiplexing channels of metadevices.Here,this paper introduces a novel approach-a multi-functional metadevice achieved through the two-level control of the encoding phasechange metaatoms.Utilizing the phase-change material Ge_(2)Sb_(2)Se_(4)Te1(GSST)and high refractive-index liquid diiodomethane(CH_(2)I_(2)),this paper showcases precise control over electromagnetic wave manipulation.The GSST state governs the tunable function,switching it ON and OFF,while the presence of liquid in the hole dictates the deflection angle when the tunable function is active.Importantly,our tunable coding metasurface exhibits robust performance across a broad wavelength spectrum.The incorporation of high refractive-index liquid extends the regulatory dimension of the metadevice,enabling dynamic switching of encoding bit levels.This two-level tunable metadevice,rooted in phase-change materials,presents a promising avenue for the dynamic control of functions.展开更多
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
文摘Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.
基金Supported by the National Key Research and Development Program(2023YFC3107602)。
文摘Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.
基金supported by the National Natural Science Foundation of China(51971157)Shenzhen Science and Technology Program(JCYJ20210324115412035,JCYJ202103-24123202008,JCYJ20210324122803009 and ZDS-YS20210813095534001)Guangdong Foundation for Basic and Applied Basic Research Program(2021A1515110880).
文摘In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.
基金Project(2021YFB3700801)supported by the National Key Research and Development Program of ChinaProject(2023JJ30683)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the State Key Laboratory of Powder Metallurgy(Central South University),China。
文摘Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.
基金National Key R&D Program of China(2022YFB3807700)National Natural Science Foundation of China(22133005,22103093)+4 种基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600,23ZR1472600)Youth Innovation Promotion Association CAS(2022251)Shanghai Super Post-Doctor Incentive Program(2022665)China Postdoctoral Science Foundation(2023M733621)Shanghai Explorer Program(Batch I)(23TS1401500)。
文摘Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO_(2),a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structure,which has attracted significant attention due to its structural robustness and relatively high specific capacity.However,it has short cycle life and poor rate capability.To address these issues,Ti atoms,known for enhancing structural stability,and Cu atoms,which facilitate desodiation,were doped intoβ-NaMnO_(2) by first-principles calculation and crystal orbital Hamilton population(COHP)analysis.β-NaMn_(0.8)Ti_(0.1)Cu_(0.1)O_(2) exhibits a notable increase in reversible specific capacity and remarkable rate properties.Operating at a current density of 0.2C(1C=219 mA·g^(–1))and within a voltage range of 1.8–4.0 V,the modified material delivers an initial discharge capacity of 132 mAh·g^(–1).After charge/discharge testing at current densities of 0.2C,0.5C,1C,3C,and 0.2C,the material still maintains a capacity of 110 mA h·g^(–1).The doping of Ti atoms slows down the changes in the crystal structure,resulting in only minimal variation in the lattice constant c/a during the desodiation process.Mn and Cu engage in reversible redox reactions at voltages below 3.0 V and around 3.5 V,respectively.The extended plateau observed in the discharge curve below 3.0 V signifies that Mn significantly contributes to the overall battery capacity.This study provides insights into modifyingβ-NaMnO_(2) as a cathode material,offering experimental evidence and theoretical guidance for enhancing battery performance in Na-ion batteries.
基金Supported by the Zhejiang Provincial"Jianbing"and"Lingyan"R&D Programs(2023C03012,2024C01126)。
文摘The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results.
基金Student Training Program for Innovation and Entrepreneurship of Hangzhou Institute for Advanced Study,UCAS(CXCY20230305)Chinese Academy of Sciences Key Project(ZDRW-CN-2021-3-1-18)。
文摘Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.
文摘For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.
基金Project(2024YFB4608600)supported by the National Key Research and Development Program of ChinaProjects(52271063,U21B2066,U24B2024)supported by the National Natural Science Foundation of China+3 种基金Project(JSGG20210713091539014)supported by the Shenzhen Science and Technology Innovation Commission Key Technical Project,ChinaProject(HNGD2025040)supported by the Overseas High-Level Talents Introduction of Henan Province,ChinaProject(240621041)supported by the Fundamental Research Funds of Henan Academy of Sciences,ChinaProject(20231120233925001)supported by Stabilization Support Program for Higher Education Institutions of Shenzhen,China。
文摘In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid lead-bismuth eutectic(LBE)and air at 350℃.The results show that all three steels tested in LBE are not subjected to evident degradation of tensile elongation to failure and strength compared to those tested in air,suggesting that LME does not occur regardless of the processing methods.The LPBF 316L steel exhibits the highest yield strength(420-435 MPa),followed by casting 316 L(~242 MPa)and PEP 316L(146-165 MPa).Ultimate tensile strength of three steels is comparable and ranges from 427 to 485 MPa.The PEP and casting 316L steels have similar total elongation to failure(i.e.,40.0%-43.8%),whereas this property decreases markedly to 18.6%-19.5% for the LPBF 316 L steel.The superior strength and relatively low ductility of the LPBF 316L steel can be attributed to nanosized dislocations trapped at cell structures which can produce a remarkable strengthening effect to the steel matrix.By contrast,due to massive residual micropores,the PEP 316L steel has the lowest strength.
基金supported by the Institutional Research Grant(Thailand Research Fund:IRG598004)
文摘The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.
基金This work has been supported by Chinese NSF grants 90103033NKBRSFG199803060.
文摘The paper studies the value of information in an investment problem,here,the information is assumed to be imperfect.The value of information depends on its structure which is characterized by the joint(or conditional)probability matrix of information variable and state variable.we have defined some partial ordering over the matrices.our main results provide some sufficient conditions,which described by the partial ordering,for the value of information to increase.Applying these results,we have obtained some basic properties of the value of information.
基金Projects(52122906,52306205)supported by the National Natural Science Foundation of ChinaProject(LHZ20E090001)supported by the Natural Science Foundation of Zhejiang Province,China。
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA15021100)the National Natural Science Foundation of China(12147103)the Fundamental Research Funds for the Central Universities。
文摘Taiji-2 project is the second step of Taiji program,which is to verify the required technology for Taiji-3 mission.The feasibility study of Taiji-2 is successfully finished,and some of the main progress is introduced here.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
文摘Understanding the equation of state of cold dense matter,i.e.,those inside neutron stars,is a key problem in the multi-messenger astronomical era.In order to facilitate the scientific discussions between different commu-nities in the relevant fields,particularly between nuclear physicists and astrophysicists,we have organized the Dialo-gue at the Dream Field(DDF2024).The participants explored topics of various fields such as pulsar astrophysics,transient phenomena,hadronic and nuclear matter,supra-nuclear matter with quark degree of freedom,numerical relativity.This involved discussions on the mechanisms,model constructions,observational impacts,and introduc-tions of new facilities.In-depth exchanges were carried out through invited talks and free discussions,as well as a visit to view the FAST telescope.
基金Projects(52274397,52275382)supported by the National Natural Science Foundation of ChinaProject(tsqn202211115)supported by the Taishan Scholars Program of Shandong Province,China+2 种基金Project supported by the Yantai High-end Talent Introduction“Double Hundred Plan”(2021),ChinaProject(ZR2024JQ020)supported by the Shandong Provincial Natural Science Foundation of ChinaProjects(CZ20210034,CM20223013)supported by the Changzhou Sci&Tech Program,China。
文摘In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease.
文摘Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.
基金Supported by the National Natural Science Foundation of China(62001489)。
文摘Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RFI)being the most common type,leading to a severe degradation in image quality.To address the above problem,numerous algorithms have been proposed.Although inpainting networks have achieved excellent results,their generalization is unclear.Whether they still work effectively in cross-sensor experiments needs fur⁃ther verification.Through the time-frequency analysis to interference signals,this work finds that interference holds domain invariant features between different sensors.Therefore,this work reconstructs the loss function and extracts the domain invariant features to improve its generalization.Ultimately,this work proposes a SAR RFI suppression method based on domain invariant features,and embeds the RFI suppression into SAR imaging pro⁃cess.Compared to traditional notch filtering methods,the proposed approach not only removes interference but also effectively preserves strong scattering targets.Compared to PISNet,our method can extract domain invariant features and hold better generalization ability,and even in the cross-sensor experiments,our method can still achieve excellent results.In cross-sensor experiments,training data and testing data come from different radar platforms with different parameters,so cross-sensor experiments can provide evidence for the generalization.
基金Supported by the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB0580000,XDB43010200)National Natural Science Foundation of China(62222514,62350073,U2341226,61991440)+6 种基金National Key Research and Development Program of China(2023YFA1406900)Shanghai Science and Technology Committee(23ZR1482000,22JC1402900,22ZR1472700)Natural Science Foundation of Zhejiang Province(LR22F050004)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Youth Innovation Promotion Association(Y2021070)and International Partnership Program(112GJHZ2022002FN)of Chinese Academy of SciencesShanghai Human Resources and Social Security Bureau(2022670)China Postdoctoral Science Foundation(2023T160661,2022TQ0353 and 2022M713261).
文摘Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functions based on the transition between amorphous and crystalline states.However,the inherent limitation in tunable states imposes constraints on the multiplexing channels of metadevices.Here,this paper introduces a novel approach-a multi-functional metadevice achieved through the two-level control of the encoding phasechange metaatoms.Utilizing the phase-change material Ge_(2)Sb_(2)Se_(4)Te1(GSST)and high refractive-index liquid diiodomethane(CH_(2)I_(2)),this paper showcases precise control over electromagnetic wave manipulation.The GSST state governs the tunable function,switching it ON and OFF,while the presence of liquid in the hole dictates the deflection angle when the tunable function is active.Importantly,our tunable coding metasurface exhibits robust performance across a broad wavelength spectrum.The incorporation of high refractive-index liquid extends the regulatory dimension of the metadevice,enabling dynamic switching of encoding bit levels.This two-level tunable metadevice,rooted in phase-change materials,presents a promising avenue for the dynamic control of functions.