Gold(Au)as co-catalyst is remarkable for activating methane(CH4),especially atomically dispersed Au with maximized exposing active sites and specific electronic structure.Furthermore,singlet oxygen(^(1)O_(2))typically...Gold(Au)as co-catalyst is remarkable for activating methane(CH4),especially atomically dispersed Au with maximized exposing active sites and specific electronic structure.Furthermore,singlet oxygen(^(1)O_(2))typically manifests a mild redox capacity with a high selectivity to attack organic substrates.Peroxomonosulfate(PMS)favors to produce oxidative species 102 during the photocatalytic reactions.Thus,combining atomic Au as co-catalyst and ^(1)O_(2) as oxidant is an effective strategy to selectively convert CH4.Herein,we synthesized atomically dispersed Au on WO_(3)(Au/WO_(3)),where Au was in the forms of single atoms and clusters.At room temperature,such Au/WO_(3) exhibited enhanced photocata lytic conversion of CH4 to CH3 CH3 with a selectivity,up to 94%,under visible light.The radicals-pathway mechanism of CH4 coupling has also been investigated through detection and trapping experiment of active species.Theoretical calculations further interpret the electronic structure of Au/WO_(3) and tip-enhanced local electric field at the Au sites for promoting CH4 conversion.展开更多
Since their seminal discovery in 2011,two-dimensional(2D)transition metal carbides/nitrides known as MXenes,that constitute a large family of 2D materials,have been targeted toward various applications due to their ou...Since their seminal discovery in 2011,two-dimensional(2D)transition metal carbides/nitrides known as MXenes,that constitute a large family of 2D materials,have been targeted toward various applications due to their outstanding electronic properties.MXenes functioning as co-catalyst in combination with certain photocatalysts have been applied in photocatalytic systems to enhance photogenerated charge separation,suppress rapid charge recombination,and convert solar energy into chemical energy or use it in the degradation of organic compounds.The photocatalytic performance greatly depends on the composition and morphology of the photocatalyst,which,in turn,are determined by the method of preparation used.Here,we review the four different synthesis methods(mechanical mixing,self-assembly,in situ decoration,and oxidation)reported for MXenes in view of their application as co-catalyst in photocatalysis.In addition,the working mechanism for MXenes application in photocatalysis is discussed and an outlook for future research is also provided.展开更多
基金sponsored by Shanghai Pujiang Program(No.19PJ1405200)the Startup Fund for Youngman Research at SJTU(SFYR at SJTU,No.WF220516003)。
文摘Gold(Au)as co-catalyst is remarkable for activating methane(CH4),especially atomically dispersed Au with maximized exposing active sites and specific electronic structure.Furthermore,singlet oxygen(^(1)O_(2))typically manifests a mild redox capacity with a high selectivity to attack organic substrates.Peroxomonosulfate(PMS)favors to produce oxidative species 102 during the photocatalytic reactions.Thus,combining atomic Au as co-catalyst and ^(1)O_(2) as oxidant is an effective strategy to selectively convert CH4.Herein,we synthesized atomically dispersed Au on WO_(3)(Au/WO_(3)),where Au was in the forms of single atoms and clusters.At room temperature,such Au/WO_(3) exhibited enhanced photocata lytic conversion of CH4 to CH3 CH3 with a selectivity,up to 94%,under visible light.The radicals-pathway mechanism of CH4 coupling has also been investigated through detection and trapping experiment of active species.Theoretical calculations further interpret the electronic structure of Au/WO_(3) and tip-enhanced local electric field at the Au sites for promoting CH4 conversion.
基金supported by the National Natural Science Foundation of China(No.11574111 and No.11974129 to X.-F.W.)“the Fundamental Research Funds for the Central Universities.”.
文摘Since their seminal discovery in 2011,two-dimensional(2D)transition metal carbides/nitrides known as MXenes,that constitute a large family of 2D materials,have been targeted toward various applications due to their outstanding electronic properties.MXenes functioning as co-catalyst in combination with certain photocatalysts have been applied in photocatalytic systems to enhance photogenerated charge separation,suppress rapid charge recombination,and convert solar energy into chemical energy or use it in the degradation of organic compounds.The photocatalytic performance greatly depends on the composition and morphology of the photocatalyst,which,in turn,are determined by the method of preparation used.Here,we review the four different synthesis methods(mechanical mixing,self-assembly,in situ decoration,and oxidation)reported for MXenes in view of their application as co-catalyst in photocatalysis.In addition,the working mechanism for MXenes application in photocatalysis is discussed and an outlook for future research is also provided.