期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nonnegative matrix factorization with Log Gabor wavelets for image representation and classification
1
作者 Zheng Zhonglong Yang Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期738-745,共8页
Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially loc... Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied. 展开更多
关键词 non-negative matrix factorization (NMF) Log Gabor wavelets principal component analysis locally linearembedding (LLE)
在线阅读 下载PDF
Color-texture segmentation using JSEG based on Gaussian mixture modeling 被引量:4
2
作者 Wang Yuzhong Yang Jie Zhou Yue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期24-29,共6页
An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift ... An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift (AMS) based clustering is used for nonparametric clustering of image data set. The clustering results are used to construct Gaussian mixture modelling (GMM) of image data for the calculation of soft J value. The region growing algorithm used in JSEG is then applied in segmenting the image based on the multiscale soft J-images. Experiments show that the synergism of JSEG and the soft classification based on AMS based clustering and GMM overcomes the limitations of JSEG successfully and is more robust. 展开更多
关键词 color image segmentation JSEG adaptive mean shift based dustering Gaussian mixture modeling soft J-value.
在线阅读 下载PDF
Color-texture based unsupervised segmentation using JSEG with fuzzy connectedness 被引量:2
3
作者 Zheng Yuanjie Yang Jie Zhou Yue Wang Yuzhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期213-219,共7页
Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment im... Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment image correctly. Enlightened from segmentation based on fuzzy theories, soft class-map is constracted to solve that problem. The definitions of values and other related ones are adjusted according to the soft class-map. With more detailed values obtained from soft class map, more color distribution information is preserved. Experiments on a synthetic image and many other color images illustrate that JSEG with soft class-map can solve efficiently the problem that in a region there may exist color gradual variation in a smooth transition. It is a more robust method especially for images which haven' t been heavily blurred near boundaries of underlying regions. 展开更多
关键词 unsupervised segmentation color segmentation color texture segmentation fuzzy method.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部