Exploring catalysts with high catalytic activity and low cost is crucial for promoting the electrocatalytic reduction of CO_(2).In this study,Ag nanoparticle catalysts were synthesized on GS carbon and vapor grown car...Exploring catalysts with high catalytic activity and low cost is crucial for promoting the electrocatalytic reduction of CO_(2).In this study,Ag nanoparticle catalysts were synthesized on GS carbon and vapor grown carbon fiber(VGCF)carbon carriers using different silver precursors(AgAc,AgNO_(3))through the ultrafast high temperature thermal shock method.The experimental results demonstrated that the performance of Ag catalysts for the electrocatalytic reduction of CO_(2) to CO could be significantly enhanced by modulating the nanostructure,carrier,and metal loading.The VGCF-AgNO_(3)-HT nanoparticles exhibited a relatively regular spherical morphology,with smaller particle sizes and uniform distribution.Furthermore,the intricate and overlapping arrangement of VGCF carbon nanofibers contributed to increasing the active area for electrochemical reactions,making it an excellent catalyst carrier.Catalysts with varying Ag loadings were prepared using the thermal shock method,and it was observed that the nanoparticles maintained their superior nanostructures even with increased Ag loading.The Ag-HT-65 catalyst exhibited outstanding catalytic performance,achieving a CO Faradaic efficiency of 93.03% at a potential of−0.8 V(vs.RHE).After 12 h of testing,the CO Faradaic efficiency remained 90%,exhibiting an excellent stability.展开更多
Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural feat...Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural features in hard carbon,namely defects,crystallites,and close pores,are directly responsible for the electrochemical performance in sodium-ion batteries.Here,we employ bamboo-derived hard carbon to systematically regulate the defects and crystallites in hard carbon by introducing mechanical activation.Benefiting from ball milling,the intermediate product with a high specific area more easily transforms into hard carbon,which possesses abundant closed pores,effective interlayer spacing,and suitable sodium storage defects,helping to improve the sodium ion storage performance.As a result,the hard carbon ball milled for 20 min presents a high reversible capacity of 315.2 mA·h/g at 17.5 mA/g with an initial coulombic efficiency up to 79.3%,as well as good rate and cycling performances.展开更多
Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle ...Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM.展开更多
基金Project(52304338)supported by the National Natural Science Foundation of China。
文摘Exploring catalysts with high catalytic activity and low cost is crucial for promoting the electrocatalytic reduction of CO_(2).In this study,Ag nanoparticle catalysts were synthesized on GS carbon and vapor grown carbon fiber(VGCF)carbon carriers using different silver precursors(AgAc,AgNO_(3))through the ultrafast high temperature thermal shock method.The experimental results demonstrated that the performance of Ag catalysts for the electrocatalytic reduction of CO_(2) to CO could be significantly enhanced by modulating the nanostructure,carrier,and metal loading.The VGCF-AgNO_(3)-HT nanoparticles exhibited a relatively regular spherical morphology,with smaller particle sizes and uniform distribution.Furthermore,the intricate and overlapping arrangement of VGCF carbon nanofibers contributed to increasing the active area for electrochemical reactions,making it an excellent catalyst carrier.Catalysts with varying Ag loadings were prepared using the thermal shock method,and it was observed that the nanoparticles maintained their superior nanostructures even with increased Ag loading.The Ag-HT-65 catalyst exhibited outstanding catalytic performance,achieving a CO Faradaic efficiency of 93.03% at a potential of−0.8 V(vs.RHE).After 12 h of testing,the CO Faradaic efficiency remained 90%,exhibiting an excellent stability.
基金Project(2022RC3048)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject support by the Guangdong Greenway Technology Co.Ltd.,China。
文摘Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural features in hard carbon,namely defects,crystallites,and close pores,are directly responsible for the electrochemical performance in sodium-ion batteries.Here,we employ bamboo-derived hard carbon to systematically regulate the defects and crystallites in hard carbon by introducing mechanical activation.Benefiting from ball milling,the intermediate product with a high specific area more easily transforms into hard carbon,which possesses abundant closed pores,effective interlayer spacing,and suitable sodium storage defects,helping to improve the sodium ion storage performance.As a result,the hard carbon ball milled for 20 min presents a high reversible capacity of 315.2 mA·h/g at 17.5 mA/g with an initial coulombic efficiency up to 79.3%,as well as good rate and cycling performances.
基金Project(51772333) supported by the National Natural Science Foundation of China。
文摘Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM.