The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-...The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%−98%.The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists ofα+βphase,and the Zr-25Ta-5Ti alloy belongs to the nearβtype alloy containing a small amount ofαandωphases.With the addition of Ti,the elastic modulus of the alloys was decreased from(99.5±7.2)GPa for Zr-30Ta alloy to(73.6±6.3)GPa for Zr-25Ta-5Ti alloy.Furthermore,it is shown that,in comparison to CP-Ti and Ti-6Al-4V alloy,the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys.This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.展开更多
基金Project(51404302)supported by the National Natural Science Foundation of ChinaProject(QJ2018003A)supported by the Youth Scientific Research Foundation of the Central South University of Forestry and Technology,China。
文摘The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%−98%.The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists ofα+βphase,and the Zr-25Ta-5Ti alloy belongs to the nearβtype alloy containing a small amount ofαandωphases.With the addition of Ti,the elastic modulus of the alloys was decreased from(99.5±7.2)GPa for Zr-30Ta alloy to(73.6±6.3)GPa for Zr-25Ta-5Ti alloy.Furthermore,it is shown that,in comparison to CP-Ti and Ti-6Al-4V alloy,the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys.This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.