期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unleashing the Potential of Electroactive Hybrid Biomaterials and Self‑Powered Systems for Bone Therapeutics
1
作者 Shichang Liu Farid Manshaii +7 位作者 Jinmiao Chen Xinfei Wang Shaolei Wang Junyi Yin Ming Yang Xuxu Chen Xinhua Yin Yunlei Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期463-497,共35页
The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical ... The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. 展开更多
关键词 Electroactive biomaterials Self-powered bioelectronics Bone regeneration Bone tissue
在线阅读 下载PDF
Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis
2
作者 Pan Luo Fu-Qiang Gao +5 位作者 Wei Sun Jun-You Li Cheng Wang Qing-Yu Zhang Zhi-Zhuo Li Peng Xu 《Military Medical Research》 SCIE CAS CSCD 2024年第2期287-307,共21页
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec... Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies. 展开更多
关键词 Rheumatoid arthritis Fluorescent probe IMAGING DIAGNOSIS BIOMARKER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部