Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered ext...Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.展开更多
In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ra...In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ratios(λ)were prepared using pulsed electrodeposition in this paper and unidirectional tensile experiments were carried out at room temperature with different currents and their applied directions.The experimental results show that the nanocrystalline Ni foil produces an obvious electroplasticity effect after applying the current field,and when 300<λ<1100,the current weakens the size effect of nanocrystalline Ni foils to a certain extent,and the angle between the current direction and the deformation direction also affects the mechanical response of nanocrystalline Ni foils,and when the angle between the current direction and the deformation direction is 0°,electroplasticity effect is the best,and the current has the most significant effect of abating the size effect of the material.The mechanism of unidirectional tensile deformation of nanocrystalline Ni foils under the effect of pulsed current was analyzed using TEM and TKD.It was found that the applied pulse current increased the activity of the nanocrystalline boundaries,promoted the movement of dislocations,and reduced the tendency of dislocation entanglement.The higher the peak current density and the smaller the angle between the direction of the current and the direction of deformation,the smaller the grain boundary orientation difference,the more dispersed the grain orientation,and the lower the density of geometrically necessary dislocations(GND)in the deformed nanocrystalline foil,the more significant the effect on material plasticity improvement.展开更多
During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilitie...During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.展开更多
In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’d...In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’design,various materials properties,and finally optimizing the corona protection system.Several samples of SiC based nonlinear conductivity materials for corona protection were fabricated in laboratory and then investigated.The conductivity dependencies on electric field(0.05 to 1 kV/mm)and temperature(20 to 155℃)were measured.By comparing the heat-resistant grades of the corona protection material and the insulating material,the maximum working temperature of the corona protection material corresponds to the heat-resistant grade F of the insulating material.As the temperature increases,the nonlinear characteristics of the corona protection material in the experiment decrease dramatically,reducing the heat-resistant grade of the corona protection material.The decrease in the nonlinear characteristics of the corona protection material at the maximum operating temperature causes the maximum electric field strength at the end of the HV rotating machines end corona protection(ECP)exceeding the corona discharge electric field strength,resulting in corona phenomenon.展开更多
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t...Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
A new process of hydroforming with controllable radial pressure was proposed to overcome difficulties in the forming of low plastic materials and large height-to-diameter ratio workpieces. A typical 5A06 aluminum allo...A new process of hydroforming with controllable radial pressure was proposed to overcome difficulties in the forming of low plastic materials and large height-to-diameter ratio workpieces. A typical 5A06 aluminum alloy dome was numerically and experimentally investigated. The reasons for typical defects were analyzed under different radial pressures. Effects of radial pressure on the thickness distribution were discussed and optimal radial pressure was determined. It is shown by numerical simulations and experiment that a cup with a drawing ratio of 2.4 is formed by the new process of hydroforming with controllable radial pressure. It is significantly effective for the forming of low plastic materials and large height-to-diameter ratio workpieees. Two typical thinning points exit along the dome wall. With the radial pressure, thinning is decreased effectively at the two points, the dome forming is achieved and thickness distribution is more uniform.展开更多
SiO2-Al2O3/EP-PU nanocomposites, which contained polyurethane(PU) flexible chain, were prepared via epoxy resin, PU and modified silica and alumina particles. Silica and alumina particles were modified by coupling age...SiO2-Al2O3/EP-PU nanocomposites, which contained polyurethane(PU) flexible chain, were prepared via epoxy resin, PU and modified silica and alumina particles. Silica and alumina particles were modified by coupling agents KH-560 and KH550, respectively. EP-PU was used as matrix, PU as toughening agent, Si O2-Al2O3 as filled and MTHPA as curing agent. The mass ratio of PU was 30% in this system. The chemical structure of the products was confirmed by FT-IR measurements, the morphological structure of fracture surface and the surface of the hybrid materials were observed by scanning electron microscope(SEM) and transmission electron microscope(TEM), and shearing strength and breakdown field were measured, respectively. When the mass fraction of inorganic component was 10% and the mass ratio of Si O2 to Al2O3 was 4.5:5.5, shearing strength of Si O2-Al2O3/EP-PU was 28.5 MPa and breakdown field was 15 k V/mm, the data could meet the property requirement of insulating material.展开更多
To prepare PZT powder at lower temperature, lead zirconate titanate (PZT) powder (x(Zr)/x(Ti)=56?44) was prepared by wet-dry method. Glycol was used as the solvent, and zirconium oxychloride was used as zirconium sour...To prepare PZT powder at lower temperature, lead zirconate titanate (PZT) powder (x(Zr)/x(Ti)=56?44) was prepared by wet-dry method. Glycol was used as the solvent, and zirconium oxychloride was used as zirconium source. The properties and structure of the powder were analyzed by XRD, SEM and Sedimentograph. The effects of sintering parameter such as sintering temperature, keeping time and heating-up velocity on structure of PZT power were investigated. The results show that homogeneous PZT with single-phase perovskite structure can be obtained after sintering at 730 ℃ for 2 h, and the average size of PZT powder is about 113 nm.展开更多
Aiming at the problem of tool wear and breakage, the low accuracy of machined surface duringthe milling process of automobile panel splicing dies, the cutting force modeling of micro element is carriedout. The cutting...Aiming at the problem of tool wear and breakage, the low accuracy of machined surface duringthe milling process of automobile panel splicing dies, the cutting force modeling of micro element is carriedout. The cutting chip thickness of each cutting cycle is built as a function of the cutting angle and the shearforce according to the different hardness of machining materials, and a plow force model are obtained underng angles. By introducing a single degree of freedom italic collision model, the Hopkinsontest is used to obtain the elastic deformation δ of the tool workpiece impact under different spindle speeds,sults showforce on the tool in the transition area is obtained. Combining above models together,of milling force in the transition area can be obtained. Experiment and simulation reconslstendirections is studied. Fromcythto prove the accuracy of the model. The surface quality under different feede analysis results of machined surface quality, surfacedifference between workpieces, it is concluded that better surface quality can be obtaineness and heightness and low hardness workpiece. The results provide theoretical support for the optimizationing process in the splicing die of the automobile panel highof the milling process in the splicing die of the automobile panel.展开更多
It is values that determine one’s future direction of development.The young top innovative scientific talents are outstanding ones both in the scientific field and the youth,whose values not only determine their own ...It is values that determine one’s future direction of development.The young top innovative scientific talents are outstanding ones both in the scientific field and the youth,whose values not only determine their own future directions of development,but also the development and future of the whole country.In order to cultivate their values,it is quite necessary to strengthen the thought guidance,develop the core socialist values,and adhere to morality education,down-to-earth practice,and the pursuit of truth.Moreover,the individual development of the talents needs to be emphasized and their creativity needs to be stimulated.The synergistic functions of the organizations and departments should be given full play to in order to utilize the culture education strategy.展开更多
Two hafnium diboride based ceramic matrix composites containing 20% (volume fraction) SiC particle and with or without AIN as sintering additives were fabri,aated by hot-pressed sintering. The mechanical properties ...Two hafnium diboride based ceramic matrix composites containing 20% (volume fraction) SiC particle and with or without AIN as sintering additives were fabri,aated by hot-pressed sintering. The mechanical properties and microstructures of these two composites were tested and the thermal shock resistances were evaluated by plasma arc heater. The results indicate that the composite with A1N as sintering additive has a denser and finer microstructure than composite without sintering additive, and the mechanical properties, thermal shock resistance of the composite with A1N as sintering additive are also higher than those of the composite without A1N. Microstructure analysis on the cross-section of two composites after thermal shock tests indicates that a compact oxidation scale contains HfO2 and Al2O3 liquid phase is found on the surface of composite with A1N, which could fill the voids and cracks of surface and improve the thermal shock resistance of composite.展开更多
In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation ch...Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that t...The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.展开更多
In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's ...In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.展开更多
Based on the biological prototype characteristics of shark’s gill jet orifice,the flexible driving characteristics of ionic exchange polymer metal composites(IPMC)artificial muscle materials and the use of sleeve fle...Based on the biological prototype characteristics of shark’s gill jet orifice,the flexible driving characteristics of ionic exchange polymer metal composites(IPMC)artificial muscle materials and the use of sleeve flexible connector,the IPMC linear driving unit simulation model is built and the IPMC material-driving dynamic control structure of bionic gill unit is developed.Meanwhile,through the stress analysis of bionic gill plate and the motion simulation of bionic gill unit,it is verified that various dynamic control and active control of the jet orifice under the condition of different mainstream field velocities will be taken by using IPMC material-driving.Moreover,the large-deflection deformation of bionic gill plate under dynamic pressure and the comparative analysis with that of a rigid gill plate is studied,leading to the achievement of approximate revised modifier from real value to theoretical value of the displacement control of IPMC.展开更多
To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of ...To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of the deviator stress J2 and Lode's coefficient μ were employed for the division of deformation area. The results show that when the metal is extruded with the guiding angle,no metal flow interface forms at the container's bottom,the dead zone completely disappears,the deformation types of the metal in the plastic deformation area change from three types to one type of tension,and the homogeneity of the deformation as well as metal flow are greatly improved. The non-homogeneous metal flow at the final stage of extrusion is improved,reducing the shrinkage hole at the axis end. The radial stress of the furthest point from the axis is transformed from tensile stress to compressive stress and the axial stress,and decreased from 70.8 to 34.8 MPa. Therefore,the surface cracks caused by additional stress are greatly reduced.展开更多
基金Project(JQ2022E004)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.
基金Project(51975167)supported by the National Natural Science Foundation of China。
文摘In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ratios(λ)were prepared using pulsed electrodeposition in this paper and unidirectional tensile experiments were carried out at room temperature with different currents and their applied directions.The experimental results show that the nanocrystalline Ni foil produces an obvious electroplasticity effect after applying the current field,and when 300<λ<1100,the current weakens the size effect of nanocrystalline Ni foils to a certain extent,and the angle between the current direction and the deformation direction also affects the mechanical response of nanocrystalline Ni foils,and when the angle between the current direction and the deformation direction is 0°,electroplasticity effect is the best,and the current has the most significant effect of abating the size effect of the material.The mechanism of unidirectional tensile deformation of nanocrystalline Ni foils under the effect of pulsed current was analyzed using TEM and TKD.It was found that the applied pulse current increased the activity of the nanocrystalline boundaries,promoted the movement of dislocations,and reduced the tendency of dislocation entanglement.The higher the peak current density and the smaller the angle between the direction of the current and the direction of deformation,the smaller the grain boundary orientation difference,the more dispersed the grain orientation,and the lower the density of geometrically necessary dislocations(GND)in the deformed nanocrystalline foil,the more significant the effect on material plasticity improvement.
文摘During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.
文摘In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’design,various materials properties,and finally optimizing the corona protection system.Several samples of SiC based nonlinear conductivity materials for corona protection were fabricated in laboratory and then investigated.The conductivity dependencies on electric field(0.05 to 1 kV/mm)and temperature(20 to 155℃)were measured.By comparing the heat-resistant grades of the corona protection material and the insulating material,the maximum working temperature of the corona protection material corresponds to the heat-resistant grade F of the insulating material.As the temperature increases,the nonlinear characteristics of the corona protection material in the experiment decrease dramatically,reducing the heat-resistant grade of the corona protection material.The decrease in the nonlinear characteristics of the corona protection material at the maximum operating temperature causes the maximum electric field strength at the end of the HV rotating machines end corona protection(ECP)exceeding the corona discharge electric field strength,resulting in corona phenomenon.
基金Project(51975169)supported by the National Natural Science Foundation of ChinaProject(LH2022E085)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金Projects(50525516, 50875062 ) supported by the National Natural Science Foundation of China
文摘A new process of hydroforming with controllable radial pressure was proposed to overcome difficulties in the forming of low plastic materials and large height-to-diameter ratio workpieces. A typical 5A06 aluminum alloy dome was numerically and experimentally investigated. The reasons for typical defects were analyzed under different radial pressures. Effects of radial pressure on the thickness distribution were discussed and optimal radial pressure was determined. It is shown by numerical simulations and experiment that a cup with a drawing ratio of 2.4 is formed by the new process of hydroforming with controllable radial pressure. It is significantly effective for the forming of low plastic materials and large height-to-diameter ratio workpieees. Two typical thinning points exit along the dome wall. With the radial pressure, thinning is decreased effectively at the two points, the dome forming is achieved and thickness distribution is more uniform.
基金Project(2012RFJGG006)supported by the Harbin Science and Technology Innovation Foundation,China
文摘SiO2-Al2O3/EP-PU nanocomposites, which contained polyurethane(PU) flexible chain, were prepared via epoxy resin, PU and modified silica and alumina particles. Silica and alumina particles were modified by coupling agents KH-560 and KH550, respectively. EP-PU was used as matrix, PU as toughening agent, Si O2-Al2O3 as filled and MTHPA as curing agent. The mass ratio of PU was 30% in this system. The chemical structure of the products was confirmed by FT-IR measurements, the morphological structure of fracture surface and the surface of the hybrid materials were observed by scanning electron microscope(SEM) and transmission electron microscope(TEM), and shearing strength and breakdown field were measured, respectively. When the mass fraction of inorganic component was 10% and the mass ratio of Si O2 to Al2O3 was 4.5:5.5, shearing strength of Si O2-Al2O3/EP-PU was 28.5 MPa and breakdown field was 15 k V/mm, the data could meet the property requirement of insulating material.
文摘To prepare PZT powder at lower temperature, lead zirconate titanate (PZT) powder (x(Zr)/x(Ti)=56?44) was prepared by wet-dry method. Glycol was used as the solvent, and zirconium oxychloride was used as zirconium source. The properties and structure of the powder were analyzed by XRD, SEM and Sedimentograph. The effects of sintering parameter such as sintering temperature, keeping time and heating-up velocity on structure of PZT power were investigated. The results show that homogeneous PZT with single-phase perovskite structure can be obtained after sintering at 730 ℃ for 2 h, and the average size of PZT powder is about 113 nm.
文摘Aiming at the problem of tool wear and breakage, the low accuracy of machined surface duringthe milling process of automobile panel splicing dies, the cutting force modeling of micro element is carriedout. The cutting chip thickness of each cutting cycle is built as a function of the cutting angle and the shearforce according to the different hardness of machining materials, and a plow force model are obtained underng angles. By introducing a single degree of freedom italic collision model, the Hopkinsontest is used to obtain the elastic deformation δ of the tool workpiece impact under different spindle speeds,sults showforce on the tool in the transition area is obtained. Combining above models together,of milling force in the transition area can be obtained. Experiment and simulation reconslstendirections is studied. Fromcythto prove the accuracy of the model. The surface quality under different feede analysis results of machined surface quality, surfacedifference between workpieces, it is concluded that better surface quality can be obtaineness and heightness and low hardness workpiece. The results provide theoretical support for the optimizationing process in the splicing die of the automobile panel highof the milling process in the splicing die of the automobile panel.
基金Heilongjiang Higher Education Scientific Research Key Project(14Z009)
文摘It is values that determine one’s future direction of development.The young top innovative scientific talents are outstanding ones both in the scientific field and the youth,whose values not only determine their own future directions of development,but also the development and future of the whole country.In order to cultivate their values,it is quite necessary to strengthen the thought guidance,develop the core socialist values,and adhere to morality education,down-to-earth practice,and the pursuit of truth.Moreover,the individual development of the talents needs to be emphasized and their creativity needs to be stimulated.The synergistic functions of the organizations and departments should be given full play to in order to utilize the culture education strategy.
基金Project(90505015) supported by the National Natural Science Foundation of ChinaProject(20060213031) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Two hafnium diboride based ceramic matrix composites containing 20% (volume fraction) SiC particle and with or without AIN as sintering additives were fabri,aated by hot-pressed sintering. The mechanical properties and microstructures of these two composites were tested and the thermal shock resistances were evaluated by plasma arc heater. The results indicate that the composite with A1N as sintering additive has a denser and finer microstructure than composite without sintering additive, and the mechanical properties, thermal shock resistance of the composite with A1N as sintering additive are also higher than those of the composite without A1N. Microstructure analysis on the cross-section of two composites after thermal shock tests indicates that a compact oxidation scale contains HfO2 and Al2O3 liquid phase is found on the surface of composite with A1N, which could fill the voids and cracks of surface and improve the thermal shock resistance of composite.
基金Project(2006AA04Z405)supported by the National High Technology Research and Development Program of ChinaProject(3102019)supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
基金Projects(51404102,51334005,51274267)supported by the National Natural Science Foundation of ChinaProject(UNPYSCT-2017140)supported by the Youth Innovation Personnel Training in University and College of Heilongjiang Province,China
文摘Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金Project (61304046) supported by the National Natural Science Funds for Young Scholar of ChinaProject (F201242) supported by Natural Science Foundation of Heilongjiang Province,China
文摘The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.
基金Key Project(50436010, U0834002) supported by the National Natural Science Foundation of ChinaProjects(50675070, 50705031) supported by the National Natural Science Foundation of China+1 种基金Project(8151064101000058) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(E200909) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.
基金Project(51275102)supported by the National Natural Science Foundation of ChinaProject(HEUCF140713)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the biological prototype characteristics of shark’s gill jet orifice,the flexible driving characteristics of ionic exchange polymer metal composites(IPMC)artificial muscle materials and the use of sleeve flexible connector,the IPMC linear driving unit simulation model is built and the IPMC material-driving dynamic control structure of bionic gill unit is developed.Meanwhile,through the stress analysis of bionic gill plate and the motion simulation of bionic gill unit,it is verified that various dynamic control and active control of the jet orifice under the condition of different mainstream field velocities will be taken by using IPMC material-driving.Moreover,the large-deflection deformation of bionic gill plate under dynamic pressure and the comparative analysis with that of a rigid gill plate is studied,leading to the achievement of approximate revised modifier from real value to theoretical value of the displacement control of IPMC.
基金Project(RC2010QN017008) supported by the Excellent Young Teachers Program of Harbin City, China
文摘To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of the deviator stress J2 and Lode's coefficient μ were employed for the division of deformation area. The results show that when the metal is extruded with the guiding angle,no metal flow interface forms at the container's bottom,the dead zone completely disappears,the deformation types of the metal in the plastic deformation area change from three types to one type of tension,and the homogeneity of the deformation as well as metal flow are greatly improved. The non-homogeneous metal flow at the final stage of extrusion is improved,reducing the shrinkage hole at the axis end. The radial stress of the furthest point from the axis is transformed from tensile stress to compressive stress and the axial stress,and decreased from 70.8 to 34.8 MPa. Therefore,the surface cracks caused by additional stress are greatly reduced.