The quasi-static and dynamic compressive mechanical properties of a bullet composite are investigated using the scattered spot technique,an electronic universal testing machine,and a Split–Hopkinson pressure bar.The ...The quasi-static and dynamic compressive mechanical properties of a bullet composite are investigated using the scattered spot technique,an electronic universal testing machine,and a Split–Hopkinson pressure bar.The stress-strain curves under static and dynamic loading are also obtained,and the strain rate effect is analyzed.The rupture structure is observed under a scanning electron microscope,and the microscopic damage mechanism of the bullet composite is examined.Results show that the composite is sensitive to the strain rate,such that the compressive strength of the composite increases with increased strain rate.The relationship of the compressive strength and elastic modulus with the logarithmic strain rate is nonlinear.展开更多
A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedde...A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.展开更多
Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point ...Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10972033 and 51209042.
文摘The quasi-static and dynamic compressive mechanical properties of a bullet composite are investigated using the scattered spot technique,an electronic universal testing machine,and a Split–Hopkinson pressure bar.The stress-strain curves under static and dynamic loading are also obtained,and the strain rate effect is analyzed.The rupture structure is observed under a scanning electron microscope,and the microscopic damage mechanism of the bullet composite is examined.Results show that the composite is sensitive to the strain rate,such that the compressive strength of the composite increases with increased strain rate.The relationship of the compressive strength and elastic modulus with the logarithmic strain rate is nonlinear.
基金Project supported by the Guangxi Natural Science Foundation of China(Grant Nos.2013GXNSFAA019335 and 2015GXNSFAA139300)Guangxi Experiment Center of Information Science of China(Grant No.YB1406)+2 种基金Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing of China,Key Laboratory of Cognitive Radio and Information Processing(Grant No.GXKL061505)Guangxi Key Laboratory of Automobile Components and Vehicle Technology of China(Grant No.2014KFMS04)the National Natural Science Foundation of China(Grant Nos.61361011,61274077,and 61464003)
文摘A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1116200111502056+3 种基金and 51105083)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2012GXNSFAA053207)the Doctor Foundation of Guangxi University of Science and Technology,China(Grant No.12Z09)the Development Project of the Key Laboratory of Guangxi Zhuang Autonomous Region,China(Grant No.1404544)
文摘Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic.