The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
Selenium distillation slag(SDS)is a high-value-added secondary resource with a high recovery value.This paper aims to investigate the leaching behavior and kinetics of selenium,tellurium,and copper in the SDS acid oxi...Selenium distillation slag(SDS)is a high-value-added secondary resource with a high recovery value.This paper aims to investigate the leaching behavior and kinetics of selenium,tellurium,and copper in the SDS acid oxidation leaching process with H_(2)SO_(4) and H_(2)O_(2).The experimental results showed that under the optimum conditions,the contents of selenium,tellurium,and copper in the SDS were reduced from 22.13 wt%,3.58 wt%,and 6.42 wt%to 3.06 wt%,0.27 wt%,and 0.33 wt%,respectively.Correspondingly,the recovery rates are 87.08%,97.15%and 99.7%.The leaching processes of selenium and tellurium were controlled by diffusion and chemical reactions,and the leaching behavior of copper was controlled by chemical reactions.Below 45℃,the activation energies for selenium,tellurium,and copper were found to be 26.47,62.18 and 19.67 kJ/mol,respectively.In addition,the contents of lead,silver and gold in the leaching residue are increased to 46.8 wt%,8.35 wt%and 0.27 wt%,respectively.These substances can be utilized as raw materials for the recovery of these valuable metals.Importantly,the entire process does not generate toxic or harmful waste,making it a green and environmentally friendly method for resource recovery.展开更多
This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of...This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.展开更多
A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,t...A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozz...Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozzle and an open tube. Mixtures were prepared using nano-aluminum(n-Al),potassium perchlorate(KClO_(4)), and different carbon nanomaterials(CNMs) including graphene-oxide(GO), reduced GO, carbon nanotubes(CNTs) and nanofibers(CNFs). The mixtures were packed at different densities and ignited by laser beam. Performance was measured using thrust measurement,high-speed imaging, and computational fluid dynamics modeling, respectively. Thrust, specific impulse(ISP), volumetric impulse(ISV), as well as normalized energy were found to increase notably with CNM content. Two distinctive reaction regimes(fast and slow) were observed in combustion of low and high packing densities(20% and 55%TMD), respectively. Total impulse(IFT) and ISPwere maximized in the 5%GO/Al/KClO_4 mixture, producing 7.95 m N·s and 135.20 s respectively at 20%TMD, an improvement of 57%compared to a GO-free sample(5.05 m N·s and 85.88 s). CFD analysis of the motors over predicts the thrust generated but trends in nozzle layout and packing density agree with those observed experimentally;peak force was maximized by reducing packing density and using an open tube. The numerical force profiles fit better for the nozzle cases than the open tube scenarios due to the rapid nature of combustion. This study reveals the potential of GO in improving oxygenated salt-based nanothermites,and further demonstrates their applicability for micro-propulsion and micro-energetic applications.展开更多
The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information ...The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information within cover object and hence shields the data theft over rapidly growing network.Recently, diverse steganography techniques using edge identification have been proposed in literature.Numerous methods however utilize certain pixels in the cover image for inserting edge information,resulting in significant deformation. The conventional edge detection method limits the deployment of edge detection in steganography as concealing the information would introduce some variations to the cover image. Hence inserting data in pixel areas recognized by existing conventional edge detection techniques like canny cannot ensure the recognition of the exact edge locations for the cover and stego images. In this paper, an Adaptive steganography method based on novel fuzzy edge identification is proposed. The method proposed is proficient of estimating the precise edge areas of a cover image and also ensures the exact edge location after embedding the secret message. Experimental results reveal that the technique has attained good imperceptibility compared to the Hayat AI-Dmour and Ahmed AIAni Edge XOR method in spatial domain.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embe...To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embedded blocks to avoid a border artefact described earlier. Results showed that: 1) no gelatinous fibres were observed under a growth strain level from 0.06% to 0.08%; 2) almost all of the non-conductive tissues contained gelatinous fibres above a growth strain level from 0.15% to 0.19%; 3) the amount of fibres, the amount of fibres with gelatinous layer, per unit of tissue area, and the thickness of the gelatinous layers controlled most of the magnitude of growth stress; 4) the contribution of the S2 layer in both fibre types could also play a role in the growth stress generation.展开更多
Introduction Since Ge isotope is a new nontraditional isotope,the accumulated Ge isotope literatures are quite limited.The available researches mainly focused on two aspects:(1)the measurement of Ge isotopic compositi...Introduction Since Ge isotope is a new nontraditional isotope,the accumulated Ge isotope literatures are quite limited.The available researches mainly focused on two aspects:(1)the measurement of Ge isotopic compositions of geological and extraterrestrial materials,such as igneous rocks,marine sediments,seafloor hydrothermal fluids,hydrothermal Fe-oxyhydroxides,terrestrial high-temperature geothermal fluids,sphalerite,and iron meteorites;and(2)theoretical prediction of germanium isotope fractionation.展开更多
Aim of the study is to evaluate the environmental impact of geothermic activities by the use of in site spectral analyses of different environmental com- ponents.These activities can cause the heavy metal (Hg,Sb,S,B,...Aim of the study is to evaluate the environmental impact of geothermic activities by the use of in site spectral analyses of different environmental com- ponents.These activities can cause the heavy metal (Hg,Sb,S,B,As,H<sub>2</sub>S)drifting from power plants to around areas.Different analytical techniques展开更多
A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballisti...A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballistics structural model was checked. The Von Mises stresses obtained by the dynamical structural numerical model calculations and the Von Mises stresses calculated from the shot test strain measurements were compared. The difference for the worse case was 20% and for the best case was 0.1%.Furthermore, the model gave better agreement for the higher charge masses. The numerical structural quasi-internal ballistics computation model created was verified for the top charge mass which represents the highest stress condition and used in a gun barrel design.展开更多
In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessme...In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.展开更多
The study area is located around Guider and belongs to the Northern Cameroon Pan-African fold belt.It is essentially made of three generations of granitoids.The first generation G1 comprises diorites,tonalites and gra...The study area is located around Guider and belongs to the Northern Cameroon Pan-African fold belt.It is essentially made of three generations of granitoids.The first generation G1 comprises diorites,tonalites and granodiorites.The second one G2 is constituted by biotite granites and biotite-muscovite granites deformed in the solid-state.The third generation G3 is constituted by biotite-syenites,monzosyenites,and leucogranites. All the granitoids are cross cut by aplite veins展开更多
A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM...A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金Project(2022YFC2904900) supported by the National Key Research and Development Program of ChinaProject(U1902221) supported by the National Natural Science Foundation of China。
文摘Selenium distillation slag(SDS)is a high-value-added secondary resource with a high recovery value.This paper aims to investigate the leaching behavior and kinetics of selenium,tellurium,and copper in the SDS acid oxidation leaching process with H_(2)SO_(4) and H_(2)O_(2).The experimental results showed that under the optimum conditions,the contents of selenium,tellurium,and copper in the SDS were reduced from 22.13 wt%,3.58 wt%,and 6.42 wt%to 3.06 wt%,0.27 wt%,and 0.33 wt%,respectively.Correspondingly,the recovery rates are 87.08%,97.15%and 99.7%.The leaching processes of selenium and tellurium were controlled by diffusion and chemical reactions,and the leaching behavior of copper was controlled by chemical reactions.Below 45℃,the activation energies for selenium,tellurium,and copper were found to be 26.47,62.18 and 19.67 kJ/mol,respectively.In addition,the contents of lead,silver and gold in the leaching residue are increased to 46.8 wt%,8.35 wt%and 0.27 wt%,respectively.These substances can be utilized as raw materials for the recovery of these valuable metals.Importantly,the entire process does not generate toxic or harmful waste,making it a green and environmentally friendly method for resource recovery.
基金This research was funded by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada(JL:RGPIN-2022-03958AC:RGPIN-2022-04238).
文摘This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.
基金Supported by National Natural Science Foundation of China(61911530398,12231012)Consultancy Project by the Chinese Academy of Engineering(2022-JB-06,2023-JB-12)+3 种基金the Natural Science Foundation of Fujian Province of China(2021J01621)Special Projects of the Central Government Guiding Local Science and Technology Development(2021L3018)Royal Society of Edinburgh(RSE1832)Engineering and Physical Sciences Research Council(EP/W522521/1).
文摘A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
基金financial funding from the Egyptian governmentthe financial funding from the NSERC Discovery grant。
文摘Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozzle and an open tube. Mixtures were prepared using nano-aluminum(n-Al),potassium perchlorate(KClO_(4)), and different carbon nanomaterials(CNMs) including graphene-oxide(GO), reduced GO, carbon nanotubes(CNTs) and nanofibers(CNFs). The mixtures were packed at different densities and ignited by laser beam. Performance was measured using thrust measurement,high-speed imaging, and computational fluid dynamics modeling, respectively. Thrust, specific impulse(ISP), volumetric impulse(ISV), as well as normalized energy were found to increase notably with CNM content. Two distinctive reaction regimes(fast and slow) were observed in combustion of low and high packing densities(20% and 55%TMD), respectively. Total impulse(IFT) and ISPwere maximized in the 5%GO/Al/KClO_4 mixture, producing 7.95 m N·s and 135.20 s respectively at 20%TMD, an improvement of 57%compared to a GO-free sample(5.05 m N·s and 85.88 s). CFD analysis of the motors over predicts the thrust generated but trends in nozzle layout and packing density agree with those observed experimentally;peak force was maximized by reducing packing density and using an open tube. The numerical force profiles fit better for the nozzle cases than the open tube scenarios due to the rapid nature of combustion. This study reveals the potential of GO in improving oxygenated salt-based nanothermites,and further demonstrates their applicability for micro-propulsion and micro-energetic applications.
文摘The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information within cover object and hence shields the data theft over rapidly growing network.Recently, diverse steganography techniques using edge identification have been proposed in literature.Numerous methods however utilize certain pixels in the cover image for inserting edge information,resulting in significant deformation. The conventional edge detection method limits the deployment of edge detection in steganography as concealing the information would introduce some variations to the cover image. Hence inserting data in pixel areas recognized by existing conventional edge detection techniques like canny cannot ensure the recognition of the exact edge locations for the cover and stego images. In this paper, an Adaptive steganography method based on novel fuzzy edge identification is proposed. The method proposed is proficient of estimating the precise edge areas of a cover image and also ensures the exact edge location after embedding the secret message. Experimental results reveal that the technique has attained good imperceptibility compared to the Hayat AI-Dmour and Ahmed AIAni Edge XOR method in spatial domain.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
文摘To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embedded blocks to avoid a border artefact described earlier. Results showed that: 1) no gelatinous fibres were observed under a growth strain level from 0.06% to 0.08%; 2) almost all of the non-conductive tissues contained gelatinous fibres above a growth strain level from 0.15% to 0.19%; 3) the amount of fibres, the amount of fibres with gelatinous layer, per unit of tissue area, and the thickness of the gelatinous layers controlled most of the magnitude of growth stress; 4) the contribution of the S2 layer in both fibre types could also play a role in the growth stress generation.
文摘Introduction Since Ge isotope is a new nontraditional isotope,the accumulated Ge isotope literatures are quite limited.The available researches mainly focused on two aspects:(1)the measurement of Ge isotopic compositions of geological and extraterrestrial materials,such as igneous rocks,marine sediments,seafloor hydrothermal fluids,hydrothermal Fe-oxyhydroxides,terrestrial high-temperature geothermal fluids,sphalerite,and iron meteorites;and(2)theoretical prediction of germanium isotope fractionation.
文摘Aim of the study is to evaluate the environmental impact of geothermic activities by the use of in site spectral analyses of different environmental com- ponents.These activities can cause the heavy metal (Hg,Sb,S,B,As,H<sub>2</sub>S)drifting from power plants to around areas.Different analytical techniques
基金Ministry of Science, Industry, and Technology which supported this project under the Industrial Thesis Support Program
文摘A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballistics structural model was checked. The Von Mises stresses obtained by the dynamical structural numerical model calculations and the Von Mises stresses calculated from the shot test strain measurements were compared. The difference for the worse case was 20% and for the best case was 0.1%.Furthermore, the model gave better agreement for the higher charge masses. The numerical structural quasi-internal ballistics computation model created was verified for the top charge mass which represents the highest stress condition and used in a gun barrel design.
文摘In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.
文摘The study area is located around Guider and belongs to the Northern Cameroon Pan-African fold belt.It is essentially made of three generations of granitoids.The first generation G1 comprises diorites,tonalites and granodiorites.The second one G2 is constituted by biotite granites and biotite-muscovite granites deformed in the solid-state.The third generation G3 is constituted by biotite-syenites,monzosyenites,and leucogranites. All the granitoids are cross cut by aplite veins
文摘A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.