The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop...The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60%and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.展开更多
To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leach...To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.展开更多
Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)...Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction.展开更多
In this paper,sulfidation mechanism of cerussite in the presence of sulphur at high temperatures was investigated based on micro-flotation,X-ray powder diffractometry(XRD),electron probe microanalysis(EPMA)and X-ray p...In this paper,sulfidation mechanism of cerussite in the presence of sulphur at high temperatures was investigated based on micro-flotation,X-ray powder diffractometry(XRD),electron probe microanalysis(EPMA)and X-ray photoelectron spectroscopy(XPS).The micro-flotation test results showed that flotation recovery of the treated cerussite increased to above 80%under a suitable flotation condition.It was found that the S/PbCO3 mole ratio and pH obviously affected flotation recovery.XRD analysis results confirmed that the cerussite was decomposed into massicot and then was transformed into mainly PbS and PbO·PbSO4 after sulfidation roasting.EPMA analysis results demonstrated that surface of the obtained massicot was smooth,but surface of the artificial galena was rough and even porous.Content of oxygen decreased,whereas content of sulphur increased with an increase in the S/PbCO3 mole ratio.XPS analysis results revealed that various lead-bearing species,including mainly PbS,PbSO4 and PbO·PbSO4,were generated at the surface.Formation of PbS was advantageous to flotation of the treated cerussite.Based on these results,a reaction model of the cerussite sulfurized with sulphur was proposed.展开更多
The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a hi...The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.展开更多
To explore the effects of thermal treatment on cracking processes in granite, granite samples were thermally treated at 25-400 ℃ and then loaded under uniaxial compression. Active ultrasonic testing and passive acous...To explore the effects of thermal treatment on cracking processes in granite, granite samples were thermally treated at 25-400 ℃ and then loaded under uniaxial compression. Active ultrasonic testing and passive acoustic emission(AE) monitoring were combined to monitor the damage characteristics of the samples. The uniaxial compression strength(UCS) of the sample treated at 200 ℃ shows no apparent change compared with that of the nonheated sample, while the UCS increases at 300 °C and decreases at 400 ℃. As the temperature increases from 25 to 400 ℃, the initial P-wave velocity(Vp) decreases gradually from 4909 to 3823 m/s, and the initial Vpanisotropy ε increases slightly from 0.03 to 0.09. As the axial stress increases, ε increases rapidly in the crack closure stage and unstable cracking stage. The attenuation of ultrasonic amplitude spectra also shows an obvious anisotropy. Besides, the main location magnitude of AE events decreases after thermal treatment, and low-frequency AE events and high-amplitude AE events increasingly occur. However, there is insufficient evidence that the treatment temperature below 400 ℃ has a significant effect on the temporal characteristics, source locations, and b-values of AE.展开更多
1 Introduction Multi-metal contained Lead-zinc deposits in northeast Yunnan,China,is located in a joint place of the Circum-Pacific tectonic domain and Tethyan tectonic domain.This joint place is featured by complex g...1 Introduction Multi-metal contained Lead-zinc deposits in northeast Yunnan,China,is located in a joint place of the Circum-Pacific tectonic domain and Tethyan tectonic domain.This joint place is featured by complex geological structure,unique geological characteristic,and multiple lead-zinc mineral deposits,which are discretely and linearly distributed along the cracks of several main fracture zones.Most of the lead-zinc ores were filled into the展开更多
The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite un...The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy(AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.展开更多
基金Project(202202AG050010)supported by the Yunnan Major Scientific and Technological Projects,ChinaProject(202103AA080007)supported by the Key R&D Project of Science and Technology Department of Yunnan Province,ChinaProject(NECP2023-06)supported by the Open Project Fund of National Engineering and Technology Research Center for Development&Utilization of Phosphorous Resources,China。
文摘The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60%and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research Project,ChinaProject(2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research,China+1 种基金Project(KKSY201563041)supported by the Talent&Training Program of Yunnan Province,ChinaProjects(2017T20090159,2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction.
基金Project(51964027)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research Project,ChinaProject(2019J0037)supported by the Education Department of Yunnan Province,China。
文摘In this paper,sulfidation mechanism of cerussite in the presence of sulphur at high temperatures was investigated based on micro-flotation,X-ray powder diffractometry(XRD),electron probe microanalysis(EPMA)and X-ray photoelectron spectroscopy(XPS).The micro-flotation test results showed that flotation recovery of the treated cerussite increased to above 80%under a suitable flotation condition.It was found that the S/PbCO3 mole ratio and pH obviously affected flotation recovery.XRD analysis results confirmed that the cerussite was decomposed into massicot and then was transformed into mainly PbS and PbO·PbSO4 after sulfidation roasting.EPMA analysis results demonstrated that surface of the obtained massicot was smooth,but surface of the artificial galena was rough and even porous.Content of oxygen decreased,whereas content of sulphur increased with an increase in the S/PbCO3 mole ratio.XPS analysis results revealed that various lead-bearing species,including mainly PbS,PbSO4 and PbO·PbSO4,were generated at the surface.Formation of PbS was advantageous to flotation of the treated cerussite.Based on these results,a reaction model of the cerussite sulfurized with sulphur was proposed.
基金Project(41663006)supported by the National Natural Science Foundation of ChinaProject(1212011220725)supported by the Geological Survey Project of the China Geological Survey
文摘The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.
基金Project(51934003) supported by the National Natural Science Foundation of China,ChinaProject(202105AE160023) supported by the Yunnan Innovation Team,China。
文摘To explore the effects of thermal treatment on cracking processes in granite, granite samples were thermally treated at 25-400 ℃ and then loaded under uniaxial compression. Active ultrasonic testing and passive acoustic emission(AE) monitoring were combined to monitor the damage characteristics of the samples. The uniaxial compression strength(UCS) of the sample treated at 200 ℃ shows no apparent change compared with that of the nonheated sample, while the UCS increases at 300 °C and decreases at 400 ℃. As the temperature increases from 25 to 400 ℃, the initial P-wave velocity(Vp) decreases gradually from 4909 to 3823 m/s, and the initial Vpanisotropy ε increases slightly from 0.03 to 0.09. As the axial stress increases, ε increases rapidly in the crack closure stage and unstable cracking stage. The attenuation of ultrasonic amplitude spectra also shows an obvious anisotropy. Besides, the main location magnitude of AE events decreases after thermal treatment, and low-frequency AE events and high-amplitude AE events increasingly occur. However, there is insufficient evidence that the treatment temperature below 400 ℃ has a significant effect on the temporal characteristics, source locations, and b-values of AE.
文摘1 Introduction Multi-metal contained Lead-zinc deposits in northeast Yunnan,China,is located in a joint place of the Circum-Pacific tectonic domain and Tethyan tectonic domain.This joint place is featured by complex geological structure,unique geological characteristic,and multiple lead-zinc mineral deposits,which are discretely and linearly distributed along the cracks of several main fracture zones.Most of the lead-zinc ores were filled into the
基金Project(51464029)supported by the National Natural Science Foundation of ChinaProject(2014M562343)supported by China Postdoctoral Science FoundationProject(KKSY201421110)supported by the Scholar Development Project of Yunnan Province,China
文摘The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy(AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.
基金Project(52164021) supported by the National Natural Science Foundation of ChinaProject(2019FB078) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(CCC21321119A) supported by the Faculty of Land Resource Engineering,China。