Quantum information processing and communication(QIPC) is an area of science that has two main goals: On one side,it tries to explore(still not well known) potential of quantum phenomena for(efficient and reliable) in...Quantum information processing and communication(QIPC) is an area of science that has two main goals: On one side,it tries to explore(still not well known) potential of quantum phenomena for(efficient and reliable) information processing and(efficient,reliable and secure) communication.On the other side,it tries to use quantum information storing,processing and transmitting paradigms,principles,laws,limitations,concepts,models and tools to get deeper insights into the phenomena of quantum world and to find efficient ways to describe and handle/simulate various complex physical phenomena.In order to do that QIPC has to use concepts,models,theories,methods and tools of both physics and informatics.The main role of physics at that is to discover primitive physical phenomena that can be used to design and maintain complex and reliable information storing,processing and transmitting systems.The main role of informatics is,one one side,to explore,from the information processing and communication point of view,limitations and potentials of the potential quantum information processing and communication technology,and to prepare information processing methods that could utilise potential of quantum information processing and communication technologies.On the other side,the main role of informatics is to guide and support,by theoretical tools and outcomes,physics oriented research in QIPC.The paper is to describe and analyse a variety of ways and potential informatics contributes and should/could contribute to the development of QIPC--see also Gruska(1999,2006,2008).展开更多
The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps.Although,t...The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps.Although,there are many ways to obtain required data,the hardware necessary for the measurements such as 2D or 3D scanners,depending on the problem’s complexity,is too expensive.Therefore,in this paper,what we put forward as a novelty is an algorithm which is verified on the model of simple 3D scanner on the image processing basis with the resolution of 0.1 mm.There are many ways to scan surface profile;however,the image processing currently is the most trending topic in industry automation.Most importantly,in order to obtain surface images,standard high resolution reflex camera is used and thus the post processing could be realized with MatLab as the software environment.Therefore,this solution is an alternative to the expensive scanners,and single-purpose devices could be extended by many additional functions.展开更多
A kind of structure and a design method using transmission voltage-switch theory for pulse-triggered flip-flops were proposed,which are suitable for all kinds of pulse-triggered flip-flops and no extra techniques are ...A kind of structure and a design method using transmission voltage-switch theory for pulse-triggered flip-flops were proposed,which are suitable for all kinds of pulse-triggered flip-flops and no extra techniques are needed to eliminate the switching activities of internal nodes.Based on the proposed structure and design technique,two pulsed flip-flops were implemented and simulated.The proposed pulsed flip-flops have simple circuit structures.HSPICE simulation shows that the proposed pulsed D flip-flop outperforms the conventional pulsed D flip-flop by 17.2% in delay and 30.1% in power-delay-product(PDP) and the proposed pulsed JK flip-flop has low power and small PDP compared with pulsed D pulsed flip-flops,confirming that the proposed structure and design technique are simple and practical.展开更多
Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems.Quantum information processing can be used to red...Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems.Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems.We speak of pseudo-telepathy when it is able to completely eliminate the need for communication.Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game,quantum players are almost certain to make errors even though they use a winning strategy.After introducing a model for pseudotelepathy games,we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game.The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.展开更多
基金Support of the grant MSM00211622419 is to be acknowledge
文摘Quantum information processing and communication(QIPC) is an area of science that has two main goals: On one side,it tries to explore(still not well known) potential of quantum phenomena for(efficient and reliable) information processing and(efficient,reliable and secure) communication.On the other side,it tries to use quantum information storing,processing and transmitting paradigms,principles,laws,limitations,concepts,models and tools to get deeper insights into the phenomena of quantum world and to find efficient ways to describe and handle/simulate various complex physical phenomena.In order to do that QIPC has to use concepts,models,theories,methods and tools of both physics and informatics.The main role of physics at that is to discover primitive physical phenomena that can be used to design and maintain complex and reliable information storing,processing and transmitting systems.The main role of informatics is,one one side,to explore,from the information processing and communication point of view,limitations and potentials of the potential quantum information processing and communication technology,and to prepare information processing methods that could utilise potential of quantum information processing and communication technologies.On the other side,the main role of informatics is to guide and support,by theoretical tools and outcomes,physics oriented research in QIPC.The paper is to describe and analyse a variety of ways and potential informatics contributes and should/could contribute to the development of QIPC--see also Gruska(1999,2006,2008).
基金Project(2102–2020)supported by the SPEV Project,University of Hradec Kralove,FIM,Czech RepublicProject(Vot-20H04)supported by Universiti Teknologi Malaysia(UTM)+1 种基金Project(Vot 4L876)supported by Malaysia Research University Network(MRUN)Project(Vot 5F073)supported by the Fundamental Research Grant Scheme(FRGS),Ministry of Education Malaysia。
文摘The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps.Although,there are many ways to obtain required data,the hardware necessary for the measurements such as 2D or 3D scanners,depending on the problem’s complexity,is too expensive.Therefore,in this paper,what we put forward as a novelty is an algorithm which is verified on the model of simple 3D scanner on the image processing basis with the resolution of 0.1 mm.There are many ways to scan surface profile;however,the image processing currently is the most trending topic in industry automation.Most importantly,in order to obtain surface images,standard high resolution reflex camera is used and thus the post processing could be realized with MatLab as the software environment.Therefore,this solution is an alternative to the expensive scanners,and single-purpose devices could be extended by many additional functions.
基金Project(60503027) supported by the National Natural Science Foundation of China
文摘A kind of structure and a design method using transmission voltage-switch theory for pulse-triggered flip-flops were proposed,which are suitable for all kinds of pulse-triggered flip-flops and no extra techniques are needed to eliminate the switching activities of internal nodes.Based on the proposed structure and design technique,two pulsed flip-flops were implemented and simulated.The proposed pulsed flip-flops have simple circuit structures.HSPICE simulation shows that the proposed pulsed D flip-flop outperforms the conventional pulsed D flip-flop by 17.2% in delay and 30.1% in power-delay-product(PDP) and the proposed pulsed JK flip-flop has low power and small PDP compared with pulsed D pulsed flip-flops,confirming that the proposed structure and design technique are simple and practical.
基金supported by the research projects MSM0021622419 and 201/0710603
文摘Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems.Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems.We speak of pseudo-telepathy when it is able to completely eliminate the need for communication.Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game,quantum players are almost certain to make errors even though they use a winning strategy.After introducing a model for pseudotelepathy games,we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game.The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.